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Fast computation of valid linear programming (LP) bounds serves as an important subrou-

tine for solving mixed-integer programming problems exactly. We introduce a new method

for computing valid LP bounds designed for this application. The algorithm corrects approx-

imate LP dual solutions to be exactly feasible, giving a valid bound. Solutions are repaired

by performing a projection and a shift to ensure all constraints are satisfied; bound computa-

tions are accelerated by reusing structural information through the branch-and-bound tree.

We demonstrate this method to be widely applicable and faster than solving a sequence of

exact LPs. Several variations of the algorithm are described and computationally evaluated

in an exact branch-and-bound algorithm within the mixed-integer programming framework

SCIP.
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1. Introduction

Software to solve mixed-integer programming (MIP) problems is widely used in both in-

dustrial and academic settings. However, due to the use of floating-point arithmetic, most

software packages are susceptible to numerical mistakes which can lead to incorrect results.

While a degree of numerical error is often tolerated by users in some settings, there are a

number of applications where truly correct and exact solutions are desirable or necessary.

Such areas include the use of MIP models to establish theoretical results, to verify the cor-

rectness of VLSI chip designs, or to determine winners for combinatorial auctions; additional

examples are given in (Cook et al., 2011; Steffy, 2011).

Implementing software to solve LPs and MIPs entirely in exact arithmetic can result in a

considerable slowdown. Recent work has focused on developing efficient methods to solve LPs

problems exactly over the rational numbers using a mix of floating-point and exact computa-

tion (Applegate et al., 2007a; Dhiflaoui et al., 2003; Espinoza, 2006; Koch, 2004; Kwappik,
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1998). A solver based on these ideas is implemented and studied by Applegate et al. (2007a)

as QSopt ex (Applegate et al., 2007b). These methods exploit the fact that even in the

presence of some numerical errors, floating-point LP solvers are often able to find an optimal

or near optimal LP basis. Once an optimal LP basis is identified, the exact rational solution

can be computed and verified without requiring that the earlier steps of the algorithm were

performed exactly.

In (Applegate et al., 2007a) an exact rational MIP solver based on QSopt ex was tested

in which an exact branch-and-bound tree was maintained and each LP encountered was

solved exactly. While QSopt ex was only moderately slower than the floating-point LP

solvers, the exact MIP code experienced a more significant slowdown when compared to

commercial solvers. In order to improve running times for exact MIP it has been observed

that solving the LP relaxation at each node exactly is not always necessary, as long as

valid LP bounds can be computed. This idea is discussed by Applegate et al. (2006) and

Neumaier and Shcherbina (2004). A recently developed exact rational MIP solver, described

by Cook et al. (2011), uses a combination of exact rational arithmetic and safe floating-point

computation.

In Section 2, we describe some known methods for generating valid bounds for LP prob-

lems. In Section 3, we describe a new algorithm for generating valid LP dual bounds, which

we will refer to as the project-and-shift method. A description of our computational experi-

ments is presented in Section 4 and conclusions and future work are discussed in Section 5.

2. Previous Work

The most straightforward way of computing valid LP bounds at nodes of a branch-and-

bound tree is to solve each LP relaxation exactly. The node LPs in a branch-and-bound

tree are typically solved by the dual simplex algorithm which can be warm started with

an optimal basis from the parent node; reoptimization can often be accomplished with a

small number of simplex pivots. This type of warm start can also be used when solving

node LPs exactly. However, computing exact LP solutions in this way may still be much

slower than the floating-point LP solver. Even in the case when the exact LP solver quickly

determines the optimal basis by performing additional pivots in floating-point arithmetic, it

would still compute an exact solution and verify its optimality at that node, which can be

time consuming. The cost associated with computing numerous node LP solutions exactly is
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an explanation for why the exact MIP solver tested in (Applegate et al., 2007a) experienced

a greater relative slowdown than their exact LP solver, when compared to floating-point

codes.

Despite the possible disadvantages of solving an exact LP at every node, it is important

to recognize that an exact LP solver will be a necessary component of an exact MIP solver

and is used to compute exact primal solutions. An exact LP solver also has the advantage

that it will provide the tightest valid LP bound at any node of the branch-and-bound tree.

Any feasible dual solution gives a valid bound on the primal LP objective value. In many

cases an approximate dual solution can be corrected to generate a valid bound in this man-

ner. If all primal variables have finite upper and lower bounds then this structure allows any

approximate dual solution to be corrected by adjusting the dual variables corresponding to

the primal variable bounds. This idea was used to compute valid dual LP bounds within the

Concorde software package which is designed to solve Traveling Salesman Problem (TSP) in-

stances by branch-and-cut where each variable is bounded by zero and one (Applegate et al.,

2006). Neumaier and Shcherbina (2004) described this procedure more generally for MIPs

having finite upper and lower bounds on all primal variables. Consider the following primal

dual pair of LPs:

Primal:

max cTx

s.t. Ax ≤ b

l ≤ x ≤ u

Dual:

min bTy − lT zl + uT zu

s.t. ATy − Izl + Izu = c

y, zl, zu ≥ 0

Any approximate dual solution ỹ, z̃l, z̃u ≥ 0 can be corrected to be exactly dual feasible

by increasing zl, zu. If r = c − AT ỹ + Iz̃l − Iz̃u is the error of the approximate solution,

then a feasible solution is given by: (y, zl, zu) = (ỹ, z̃l + r+, z̃u + r−). Where r+
i
= max(ri, 0)

and r−
i
= max(−ri, 0). This gives bTy − lT zl + uT zu as a valid upper bound on the primal

objective. Since this dual bounding method corrects approximate dual solutions using the

dual variables coming from primal bound constraints we will call it the primal-bound-shift

method. The difference between the bound and the objective value of the approximate dual

solution will be small if the approximate dual solution does not violate the constraints by a

large amount and the bounds l, u on the primal variables are not large.
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Proposition 2.1. Let ỹ, z̃l, z̃u ≥ 0 be an approximate dual solution, with cost bT ỹ − lT z̃l +

uT z̃u, then the bound computed by the primal-bound-shift method described above will be

−lT r+ + uT r− larger than the cost of the approximate dual solution (if computed exactly).

Proof. Subtracting the objective value of the approximate solution from the objective value

of the corrected solution gives: (bTy− lT zl+uT zu)−(bT ỹ− lT z̃l+uT z̃u) = −lT r++uT r−.

Neumaier and Shcherbina observed that exact precision arithmetic can be entirely avoided

when computing r and the bound by using floating-point computation and interval arithmetic

(or directed rounding if the problem is described by floating-point representable numbers).

The strength and simplicity of computing this bound suggests that it will be an excellent

choice when tight primal variable bounds are available. The drawback is that if some variable

bounds are very large or missing then it could produce weak or infinite bounds. We found

that in our test set, 31 out of 59 problems were missing at least some variable bounds, which

could lead to failure of this method.

Some recent studies (Althaus and Dumitriu, 2009; Jansson, 2004; Keil and Jansson, 2006)

have looked at solving or detecting feasibility of LPs using interval methods. The methods

presented in these articles are more general and sophisticated than the primal-bound-shift

method. Althaus and Dumitriu (2009) describe an algorithm to certify feasibility and pro-

duce valid bounds for LPs. Their algorithm identifies the implied equalities of an LP and

then, using safe interval methods, corrects the interval solution to satisfy all of the constraints

by shifting it toward the relative interior of the polyhedron. They implemented a version

of the algorithm to certify feasibility of problems and experienced a high rate of success. A

variant of their algorithm for computing valid LP bounds is also described. Their method

does not require special assumptions on the problem structure and most computations can

be performed using fast interval methods. However, it requires the solution of an auxiliary

problem to identify the implied equalities each time a bound is computed and can potentially

fail when numerical problems are encountered.

3. Project-and-Shift

The methods described in the previous section determine a valid dual solution, or an interval

containing a valid dual solution by correcting an approximate dual solution. Similarly, the

method presented in this section will generate valid bounds by repairing approximate dual
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solutions to be exactly feasible. An approximate solution is projected to satisfy all of the

equality constraints and then shifted toward the feasible region to satisfy all of the remaining

inequalities. We will not require upper and lower bounds on primal variables. However, we

will impose some conditions on the problem structure in order to effectively reuse information

throughout the branch-and-bound tree when solving a MIP.

The basic idea of the dual bounding algorithm is given in Section 3.1 with more specific

algorithmic details described in Sections 3.3–3.6; the generality of the method and the bound

quality are discussed in Section 3.2.

3.1 Basic Idea

The bounding method is defined in terms of the dual problem, where we use the following

notation for the root and node LP relaxations of the MIP, where we have A ∈ Qm×n,

c, x ∈ Qn, b, b′, y ∈ Qm, Ā ∈ Qm̄×n and b̄, z ∈ Qm̄.

Root Primal:

max cTx

s.t. Ax ≤ b

Root Dual:

min bTy

s.t. ATy = c

y ≥ 0

Node Primal:

max cTx

s.t. Ax ≤ b′

Āx ≤ b̄

Node Dual:

min b′Ty + b̄T z

s.t. ATy + ĀT z = c

y, z ≥ 0

In this notation, modification of the primal variable bounds caused by branching would

correspond to lowering components of b, or to introducing new inequalities if the bound was

previously infinite. We can assume that the LP relaxation at any node has b′ ≤ b. Adding a

cutting plane corresponds to adding a new inequality to the primal problem and thus a new

column to the dual problem. A solution feasible for the root node dual LP will be feasible

for all of the node dual problems in the branch-and-bound tree by setting the additional

components z to zero.

Algorithm 1 LP bound by dual correction (single LP version)

Input: Dual constraints ATy = c, y ≥ 0, approximate solution ỹ
Determine implied equalities of dual polyhedron
Compute relative interior point y∗ of dual polyhedron
Fix implied zero components of ỹ to zero
Project ỹ to satisfy AT ỹ = c
Set y equal to a convex combination of ỹ and y∗ such that y ≥ 0
Return: Dual bound bTy

Algorithm 1 is a simplified description of the project-and-shift algorithm as it would be

applied to a single LP. It is described using the notation of the root node as given above.
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As long as the dual LP is feasible this algorithm will always produce a valid bound. It

makes use of an approximate dual solution and corrects it to be exactly feasible. The

approximate solution is projected into the affine hull of the feasible region in order to satisfy

all equality constraints and then shifted toward the relative interior of the polyhedron to

satisfy all inequality constraints. The general idea of Algorithm 1 is also the basis for the

work of Althaus and Dumitriu (2009) who use interval arithmetic to reduce the use of exact

computation.

In principle, Algorithm 1 could be applied to generate a valid LP bound at each node of

the branch-and-bound tree when solving a MIP, but the operations required could be quite

expensive; the operations of correctly determining the implied equality constraints of the

polyhedron and computing an exact relative interior solution could be more difficult than

solving the exact LP in the first place.

We now adopt this procedure to work efficiently in a MIP setting by performing the

most expensive computations only once at the root node of the branch-and-bound tree and

reusing the structural information in order to decrease the work performed for each bound

computation. The algorithm we describe has two components. A setup phase that must be

performed once at the root node, and a bound computation operation that can be called at

nodes of the branch-and-bound tree. Unless otherwise indicated, all arithmetic operations

are performed in exact rational arithmetic to ensure validity of the computed bound.

We make the assumption that the matrix AT has full row rank and that there are no

implied equalities. We will later demonstrate that this assumption is often satisfied on a

large set of real-world problems and is more general than the assumption that all primal

upper and lower bounds are finite.

In the setup phase, given as Algorithm 2, we choose a submatrix AT

S
of AT by selecting a

subset S of the columns that span Rn. This subset S could be chosen to be all of the columns.

Then an LU factorization of AT

S
is computed. Finally a corrector point y∗ is computed such

that it is dual feasible and that it has strictly positive values in all components corresponding

to columns in S. We will define such a point to be an S-interior point.

The actual node bound computation is given as Algorithm 3. An approximate dual

solution, ỹ, z̃ ≥ 0, is corrected to be exactly feasible. First, the violation of the equality

constraints r is computed and an adjustment correcting this violation w ∈ Rm is calculated

using the LU factorization found in the setup phase; w projects the approximate solution

to satisfy the equality constraints. By reusing the LU factorization from node to node we
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Algorithm 2 Project-and-shift: setup phase

Input: Root dual constraints ATy = c, y ≥ 0
Choose subset S of columns of AT spanning Rn

Compute exact LU factorization of submatrix AT

S
induced by S

Compute exact S-interior dual solution y∗

Return: S, LU , y∗

are able to compute these projections with a low combined computational cost. Note that

the approximate dual solution is preconditioned to be non-negative. In the case that some

components are slightly negative due to numerical errors, those components can be set to

zero.

Algorithm 3 Project-and-shift: node bound computation

Input: Node dual constraints ATy + ĀT z = c, y, z ≥ 0, approximate dual sol. ỹ, z̃ ≥ 0
Exactly compute error in equality constraints r = c− AT ỹ − ĀT z̃
Solve AT

S
wS = r, exactly, using precomputed LU factorization of AT

S

Assign w as wi := (wS)i if i ∈ S and wi := 0 for i /∈ S
Choose smallest λ ∈ [0, 1] such that (y, z) = (1− λ)(ỹ + w, z̃) + λ(y∗, 0) is non-negative
Return: Dual bound b′Ty + b̄T z

Choosing a value of λ ∈ [0, 1] such that (y, z) = (1− λ)(ỹ+w, z̃) + λ(y∗, 0) ≥ 0 is always

possible. This is because all components of ỹ, z̃ are non-negative, the only negativity in

(ỹ + w, z̃) comes from w, whose support is a subset of the columns in S. By definition y∗

is strictly positive in all components of S. Furthermore, feasibility of (y, z) is guaranteed

because it is a convex combination of two solutions to the equality constraints of the system.

This explains the use of our assumptions: the assumption that the columns of S span Rn

implies that the LU factorization of AT

S
can be used to correct any violation r; the assumption

that there are no implied equalities ensures the existence of an S-interior point y∗ that can

be used to correct any negativity appearing in w.

We will refer to the use of Algorithms 2 and 3 together within a MIP branch-and-bound

tree as the project-and-shift method. Algorithm 1 gave a simplified description of this method

as it would be applied to a single LP.

The setup phase will require solving one or two exact LPs, that will be described in

Section 3.4, and computing an exact LU factorization. The node bound computations will

require considerably less computation, the most expensive part being the back-solve of a

system of equations that is done with a precomputed LU factorization. The project-and-shift
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method can be relatively slow if used to compute a single LP bound, but in a branch-and-

bound tree it is often more effective, especially when many nodes are processed; the node

bound computation step of this algorithm is often considerably faster than solving an exact

LP. Even if the optimal basis is passed to the exact LP solver as a warm start it would

compute the final basic solution exactly, which may require solving a system of equations

exactly. Computing a basic solution exactly is likely to be slower than using a precomputed

LU factorization to make the projection in Algorithm 3.

3.2 Generality and Bound Quality

We now show that the assumption that the dual problem had no implied equalities and a

full row rank constraint matrix is more general than the assumption that all primal variables

have finite upper and lower bounds. For a problem described as equality constraints and

non-negativity constraints on the variables the term implied equality refers to any variable

bound that is implied to be tight.

Proposition 3.1. The dual LP of a primal problem with finite lower and upper bounds l, u

on its variables can be written in the form:

min bTy − lT zl + uT zu

s.t. ATy − Izl + Izu = c

y, zl, zu ≥ 0

If dual LP is feasible, then it has no implied equalities and the constraint matrix has full row

rank.

Proof. The constraint matrix has full row rank because it has an identity submatrix. We

now show that there are no implied equalities. Let (y, zl, zu) be a feasible solution and let

α =
∑

m

i=1(A
T )i (the sum of all the columns of AT ). Consider the solution (y + 1, zl + 1 +

α+, zu+1+α−). We can see that each component is at least one and AT (y+1)− I(zl+1+

α+) + I(zu + 1+ α−) = ATy + α− Izl − α+ + Izu + α− = ATy − Izl + Izu = c. Therefore

this gives a feasible solution that is strictly positive in each component verifying that no

variables are implied to be zero.

Moreover, as we will see in Section 4, when considering our test set of 59 MIP instances,

the conditions that the dual problem, at the root node, has no implied equalities and that the
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dual constraint matrix has full rank holds on 57 of them, where as only 28 of the instances

had bounds on all primal variables.

The project-and-shift method relies on the existence of a full row rank submatrix AT

S

and also on the existence of a corrector point y∗ that is S-interior. We now show that the

existence of the S-interior point is equivalent to the condition that there are no implied

equalities.

Proposition 3.2. Suppose the LP min{bTy|ATy = c, y ≥ 0} is feasible and AT has full row

rank. Then there exists an S-interior point for a full row rank subset of columns S of AT if

and only if there are no implied equalities.

Proof. First, suppose there is an S-interior point of a full rank subset of the columns S.

We may assume that AT = [AT

S
|AT

N
] where N is the set of columns not in S and there is a

solution (yS, yN) with yS > 0. Let i ∈ N and suppose yi = 0, then we can construct a solution

in the following way. Since AT

S
has full row rank there exists a solution w to the equations

AT

S
w = AT

i
. We can choose ǫ > 0 such that (yS−ǫw) > 0 and then (yS−ǫw, yN +ǫei), where

ei is the ith unit vector, is a feasible S-interior point that is strictly positive in component

i. This can be repeated for any column in N and therefore there are no implied equalities.

The converse of the statement holds trivially by taking S equal to all the columns.

Now we consider the quality of the bounds that are produced by the project-and-shift

algorithm. Proposition 3.3 gives a bound on the strength of the LP bound in terms of the

approximate dual solution and the information computed in Algorithm 2.

Proposition 3.3. Assume that when Algorithm 2 is applied to the root node problem it

identifies an S-interior point y∗ with objective value zR, and that ∀i ∈ S, y∗
i
≥ d > 0. Next,

suppose Algorithm 3 is applied at the node to compute a bound, given an approximate solution

ỹ, z̃ ≥ 0 with objective value z̃N = b′T ỹ+ b̄T z̃. Also assume that (zR − z̃N) ≥ 0 (otherwise zR

can be taken as a safe dual bound). Let r = c− AT ỹ − ĀT z̃ be the error of the approximate

solution and let w be the correction used, ATw = r. Then the bound returned will be at most

z̃N + (1/d)(max
i∈S

w−
i
)(zR − z̃N) + (b′Tw)+.

Proof. First note that (1/d)(maxi∈S w
−
i
) gives an upper bound on the value of λ computed
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in Algorithm 3. Now we overestimate the dual bound produced by Algorithm 3.

b′Ty + b̄T z = (1− λ)(b′T (ỹ + w) + b̄T z̃) + λ(b′Ty∗)

≤ (1− λ)z̃N + (1− λ)b′Tw + λzR

≤ z̃N + λ(zR − z̃N) + (b′Tw)+

≤ z̃N + (1/d)(max
i∈S

w−
i
)(zR − z̃N) + (b′Tw)+

Unlike Proposition 2.1 and the primal-bound-shift method, project-and-shift does not

necessarily depend on the values or existence of primal variable bounds. From Proposition 3.3

we can identify conditions that will likely produce stronger bounds. If the S-interior point

y∗ has a good objective value, and if its components in S have large values, this can improve

the bound quality. Another desirable feature is that the projection vector w should be of

small absolute value; this may be harder to control as w will depend on the solution to the

system of equations ATw = r. If the approximate dual solution only violates the constraints

by a small amount, this will generally lead to a smaller difference between the objective value

of the approximate dual solution and the bound value.

3.3 Generating Projections

A key component of the project-and-shift method is the projection step. A projection of the

approximate dual solution into the affine hull of the dual polyhedron ensures that all equality

constraints are satisfied. Projection of a vector into an affine space is a standard operation

of linear algebra. In this section we explain our strategy for computing projections.

As described in Algorithms 2 and 3, the projection is done by computing an LU fac-

torization of a rectangular matrix AT

S
, which is used to compute a corrector w by solving

ATw = r. Using an LU factorization can take advantage of sparsity of the matrix, which

is often very high in real world MIP instances. Computing LU factorizations on problems

arising from LP applications is a well studied area so we can take advantage of these highly

developed techniques. The matrix factorization, which is the most difficult operation, is

only performed once during Algorithm 2 in the setup stage. When Algorithm 3 is called to

compute node bounds, the projection is accomplished by performing a back-solve using the

already computed factorization.

Alternative strategies for computing projections could use other methods, such as orthog-

onal projections. An advantage of computing orthogonal projections is that the approximate
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solution would be mapped to the closest point in the affine hull. The drawback is that they

may be significantly more expensive to compute. To symbolically compute an orthogonal

projection at each node may be even more difficult than calling the exact LP solver with

warm starts.

In the project-and-shift method we have a degree of freedom in choosing a subset of dual

columns S, determining which components are adjusted during the projection. Choosing S

as all the columns is a valid choice, but there are reasons to select a smaller subset. Ideally

we would pick the columns of S as those dual variables which can be adjusted without having

a large effect on the objective value. One strategy is to consider an optimal primal solution

at the root node and then choose S to be the set of all dual columns corresponding to

active primal constraints (constraints that are satisfied with equality by the solution). If we

correctly compute the optimal primal solution at the root node this choice of S would give a

full row rank submatrix AT

S
. As we will see in Section 4, selecting S in this way can improve

the bound quality. One explanation for this is that the dual variables corresponding to

these primal constraints may have relatively better objective coefficients than dual variables

that correspond to other primal constraints. In particular, primal constraints that are far

from active at an optimal primal solution or represent weak variable bounds may have dual

variables that, when adjusted, significantly affect the dual objective value in a negative way.

However, this selection is heuristic and is not guaranteed to lead to tighter bounds.

3.4 Identifying an S-interior Point

Freund et al. (1985) described a method to simultaneously compute an interior point and

identify the affine hull of a polyhedron by solving a single LP. Using a similar idea we write

an auxiliary problem that will identify an S-interior point if one exists for a set S. Expressing

the problem in the dual form, implied equality constraints correspond to components of the

problem that must be zero in any feasible solution. Here the added variables are δ ∈ R|S|

and λ ∈ R.

Dual LP Problem:

min bTy

s.t. ATy = c

y ≥ 0

Auxiliary LP Problem:

max
∑

i∈S

δi

s.t. ATy − λc = 0

yi ≥ δi ∀i ∈ S

y ≥ 0, λ ≥ 1, 0 ≤ δi ≤ 1
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If we set S equal to all the columns of AT and suppose P = {y|ATy = c, y ≥ 0} and

(y, δ, λ) is an optimal solution to the auxiliary problem then 1
λ
y is contained in the relative

interior of P , and δi = 0 implies yi = 0 for every y ∈ P . Geometrically this adds an extra

dimension λ which scales the right hand side of the constraints converting the polyhedron to

a conic form. The variables δ are indicators of each inequality being satisfied strictly, and if

any δi can take a nonzero value, it can attain its maximum value of 1 by increasing (y, λ) and

moving further into the cone. Choosing S to be any strict subset of the dual columns, an

optimal solution would produce an S-interior point 1
λ
y if one exists; otherwise some variables

δi for i ∈ S would be zero.

In Algorithm 1 it was necessary to identify the affine hull and an interior point of the dual

polyhedron. Solving this auxiliary problem exactly would accomplish these goals. However,

it would not be practical to solve for each bound computation because that would require

the solution of an exact LP at each node.

We can use this auxiliary LP problem within Algorithm 2 to correctly identify y∗ as

needed. It would also recognize if no S-interior point exists if δi was equal to zero for any

i ∈ S in the optimal solution. By Proposition 3.2 if this auxiliary problem fails to find an

S-interior point then the problem has implied equalities.

The disadvantage of using this auxiliary problem to identify the S-interior point is that

the point is chosen in an arbitrary way. It could have a very bad objective value and could

also have some components with strictly positive but very tiny values that could result in

poor bound values after application of Algorithm 3; both of these situations were observed

on some problems in our test set. Next we consider ways of choosing an S-interior point

while considering both its objective value and the value of its positive components.

Computing a bound using the project-and-shift method requires identification of an S-

interior point. In Proposition 3.3 we see that the value of the bound computed will depend

on the objective value of this point, and the magnitude of the shift will depend on how

large the values of the point are. Therefore the ideal point y∗ would have a good objective

value and also have large values in the components in S. Since we have assumed that S

induces a full row rank submatrix of AT and there exists an S-interior point we can use the

following modified auxiliary LP to identify one, where α is a weight given to balance the two

components of the objective function. We just introduce one additional variable δ that is a

lower bound on the entries of S. We also include an upper bound M on δ to avoid having

an unbounded problem.
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Optimized Auxiliary LP Problem:

max (1− α)(max{1, |zLP |})δ + α(bTy)

s.t. ATy = c

yi ≥ δ ∀i ∈ S

y ≥ 0, 0 ≤ δ ≤ M

The objective function of the optimized auxiliary LP problem is a convex combination

of two objectives. First, (1− α)(max{1, |zLP |})δ, corresponds to maximizing a lower bound

δ on the minimum value over components in S. The second part α(bTy) corresponds to

the objective value of the original dual problem. One option for solving this problem is to

simply choose the weight α and solve the problem once using an exact LP solver. We would

typically have access to at least an approximation of the optimal solution for the root node

LP so we normalize the first term by including a factor of max{1, |zLP |} where zLP is the

optimal objective value at the root node, or an approximation thereof.

In our experiments we found this strategy to be successful for some problems, but in

other cases the optimal solution had a value of δ = 0, even when setting the value of α to

be very small. When δ = 0 this indicates that, due to too much emphasis on the second

part of the objective function, the solution does not give an S-interior point although there

is one; this then leads to failure of the project-and-shift method. In Table 1 we list some of

the failure rates for different values of α.

Table 1: Success rate of single stage optimized auxiliary LP.

Value of α Failure Rate (δ = 0)

α = 0.1 17/59
α = 0.01 8/59
α = 0.001 7/59
α = 0.0001 2/59

After observing this behavior we employed a second strategy where the problem is solved

in two stages. First, the problem was solved by setting α = 0. Then knowing a feasible value

δ∗ of δ, the lower bound M is set equal to δ∗. Second, with this lower bound on δ, α is set

equal to 1 and the problem is re-solved. Solving the second problem can also be done as a

reoptimization since the only modification to the problem changed the variable bounds and

objective. After solving the first step of this problem and adjusting the lower bound on δ,
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the optimal basis is still primal feasible (but not dual feasible) and therefore re-optimization

can be done using the primal simplex algorithm.

3.5 Shifting by Interior Ray

The shifting step of the project-and-shift method corrects, in Algorithm 3, a projected ap-

proximate solution by shifting toward a corrector point y∗. An alternative way to correct the

projected solution would be to add a multiple of a ray from the dual recession cone to correct

it. We could adjust Algorithm 2 so that instead of finding an S-interior point y∗ it would com-

pute a ray r∗ in the dual recession cone, R = {r : AT r = 0, r ≥ 0}, satisfying r∗
i
> 0 ∀i ∈ S.

Following our previous notation, we would call this an S-interior ray. Then, in Algorithm 3,

instead of computing a bound from the corrected solution (y, z) = (1−λ)(ỹ+w, z̃)+λ(y∗, 0)

we would use (y, z) = (ỹ + w, z̃) + γ(r∗, 0), where γ is chosen large enough that (y, z) ≥ 0.

The drawback of this strategy is that it is less general than the previous assumptions.

For example, if the root node dual LP has a bounded feasible region, a ray r∗ satisfying these

conditions does not exist.

Proposition 3.4. Existence of an S-interior ray in the dual is implied by presence of all

primal bounds. Existence of an S-interior ray implies existence of an S-interior point.

Proof. If the primal problem has upper and lower bounds on all variables then the dual can

be expressed as min{bTy − lT zl + uT zu|A
Ty − Izl + Izu = c, y, zl, zu ≥ 0}. Then the

ray given by (1,1 + α+,1 + α−), where α =
∑

m

i=1(A
T )i, is in the recession cone and is

strictly positive in each component. To see that the existence of an S-interior ray implies

the existence of an S-interior point we observe that taking any feasible solution and adding

some multiple of an S-interior ray would give an S-interior point.

Examples can easily be constructed to demonstrate that none of the reverse implications

hold. Table 2 lists how often each of these conditions holds at the root node for our test set.

Table 2: Occurrence of conditions.

Condition Occurrence

All primal bounds present 28/59
Existence of S-interior ray 48/59
Existence of S-interior point 57/59
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3.6 Proving LP Infeasibility

In a branch-and-bound tree it is often necessary to certify primal infeasibility of the node

LP relaxations. Primal infeasibility can be certified by proving that the dual problem is

unbounded. Proving dual infeasibility / primal unboundedness is not as relevant a prob-

lem because if the root node primal LP has a bounded objective value, then it will remain

bounded through the branch-and-bound tree. In this section we describe two different ap-

proaches for how the project-and-shift algorithm can be used to safely prune infeasible nodes

in the branch-and-bound tree. The first approach constructs an exact infeasibility certifi-

cate, the second approach constructs an exact dual solution with objective value sufficient

to prune the node based on a cut-off bound.

The first approach constructs an exact primal infeasibility certificate in the form of an

exact cost-improving dual ray. In the notation of Section 3.1, this would be a ray r satisfying

AT r = 0, r ≥ 0 and bT r < 0. If the floating-point LP solver determines that the dual problem

is unbounded and constructs an approximate cost-improving dual ray then this ray can be

projected and shifted to be exactly feasible. If an exactly feasible dual ray is cost improving

then dual unboundedness and primal infeasibility is certified. The projection can be done

similarly to Algorithms 2 and 3, except that the ray would be corrected to satisfy ATy = 0,

and the shift could be accomplished using an S-interior ray of the dual. This approach has

some drawbacks: It requires an extra auxiliary problem to be solved exactly at the root node

to identify an S-interior ray and also requires the less general condition that an S-interior

ray exists (discussed in Section 3.5).

The second approach is to compute a valid dual bound strong enough to prune the

node without explicitly constructing an exact cost improving dual ray. We define a cut-off

bound to be a lower bound (if primal is maximization) on the objective value of the best

primal solution. Whenever a valid dual bound for a node is identified that surpasses the

cut-off bound, then that node can be pruned. The objective value of the best known primal

solution gives a valid cut-off bound. A cut-off bound can also sometimes be derived by

considering the bounds on variables with nonzero coefficients in the objective function, even

if no feasible primal solution is known or exists. We note that many software packages for

branch-and-bound will terminate the simplex algorithm early at a node after a dual solution

with objective passing this cut-off bound is identified, because the node can be pruned

without solving the LP relaxation to optimality.
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Therefore at a node which is claimed to be dual unbounded by the inexact LP solver,

an approximate dual solution that surpasses the cut-off bound can be identified and then

the project-and-shift algorithm can be applied to that solution with the goal of pruning the

node. An approximate dual solution surpassing the cut-off bound value should be readily

available at a primal infeasible node. Such a dual solution could be returned directly by the

floating-point LP solver, or it could be constructed by adding a multiple of an approximate

cost improving dual ray to a dual feasible solution. The disadvantage of this second approach

is that it is not applicable when no finite cut-off bound is known; in particular, this might

be the case when the primal is integer infeasible.

Depending on the quality of the approximate dual ray returned by the floating-point LP

solver it may or may not be possible to certify dual infeasibility at a given node. Additionally,

these methods will not apply if a node is both primal and dual infeasible. In these cases we

would resort to using the exact LP solver.

4. Computational Study

In this section we describe an implementation of the project-and-shift method and the re-

sulting computational results. First we compare the behavior of several variations of this

algorithm in practice. Secondly, we demonstrate that this method provides an advantage

over other dual bounding methods on some classes of problems.

4.1 Implementation and Test Set

The project-and-shift method for generating valid LP bounds is implemented within a hy-

brid rational branch-and-bound version of the MIP software package SCIP (Achterberg,

2007, 2009). This hybrid exact MIP solver is described in (Cook et al., 2011) and uses a

combination of exact rational arithmetic and safe floating-point computation to compute

exact solutions. An exact representation of the problem is stored, but whenever possible

computations are preformed on a floating-point relaxation or approximation of the original

problem. The implementation can choose between multiple different methods to compute

valid dual bounds, which must be computed for any binding decisions. This initial version

of the rational MIP solver is a pure branch-and-bound implementation that uses the first

fractional variable branching rule and the best bound node selection strategy.
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The code is based on SCIP version 1.2.0.8. QSopt ex 2.5.5 (Applegate et al., 2007b)

is used as the exact LP solver and Cplex 12.2 (IBM ILOG, 2011) is used as the floating-

point LP solver. The auxiliary LP in the setup phase of the project-and-shift algorithm is

solved exactly using the QSopt ex interface. The rectangular LU factorizations used for

projections are computed using a code developed by combining the exact LU factorization

code of QSopt ex (Applegate et al., 2007a) and a sparse numerical rectangular LU factor-

ization code from (Dash and Goycoolea, 2010) which was provided by Sanjeeb Dash. Both

of these codes were based on the methods described by Suhl and Suhl (1990). Exact ratio-

nal computations are performed using the GMP (GMP, 2009) library for arbitrary precision

arithmetic.

All computations were performed on one of several identical Linux machines with Intel

E5420 4-core processors and 16 GB of RAM. To maintain accurate timings, each computer

was limited to running one test at a time. Computations are performed on a test set of 59 MIP

problems selected from Miplib 3.0 (Bixby et al., 1998), Miplib 2003 (Achterberg et al.,

2006), and the collection of Mittelmann (Mittelmann, 2006). The test set was selected by

taking all instances which could be solved by the floating-point version of SCIP within two

hours using pure branch-and-bound with the settings: first fractional branching, best bound

node selection. A full listing of the problems in our test set appears in Table 5. When

studying the performance of the project-and-shift method on these test problems, the time

limit was increased to 24 hours. The curious reader can find results for an expanded test set

in (Steffy, 2011).

One additional practical step that is taken in Algorithm 3 is a simple postprocessing

of the exactly feasible dual solution obtained by the project-and-shift method when some

constraints of the problem have right and left hand sides. If the dual multipliers for both

sides of a specific constraint are nonzero then they can be lowered by equal amounts so that

one becomes zero, this operation can only improve the cost of the constructed dual solution.

4.2 Computations

We have described several variants of the project-and-shift algorithm, the significant decisions

to be made are how to choose the set S and how to choose the S-interior point. We want a

method that is as general as possible and is fast for the MIP application. Two things that

can influence the overall speed of the MIP solver are; how fast the bounds can be computed

and how strong the bounds are, because weak bounds may lead to an increased node count.
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As a first consideration we eliminate some of the proposed variants due to their lack of

generality. The use of an S-interior ray instead of an S-interior point described in Section 3.5

has conditions that were satisfied less often than the other versions.

Next we consider the optimized S-interior point described in Section 3.4. We described

an auxiliary problem with a two part objective function. When using nonzero values of α we

often experienced problems where the solution to the auxiliary problem was not S-interior,

the failure rates are listed in Table 1. Based on these failure rates we will not consider these

variants with α > 0 as viable alternatives, however we do consider the setting of α = 0

and the two stage problem. We also remark that in the cases where using nonzero values

of alpha did work, the performance on the overall branch-and-bound tree was similar to the

performance of α = 0.

After eliminating these possibilities we are left with three choices of how to compute the

S-interior point for a given set S. First, we could choose an arbitrary one using the auxiliary

problem listed in the beginning of Section 3.4. Second, we could solve the optimized interior

point problem given in Section 3.4 with α = 0; maximizing the minimum value of components

in S. Third, we could solve the two stage problem, where we first maximize the minimum

over components in S, and then do further optimization with a modified objective function

to improve the point’s objective value. In the tables, we will denote these three settings as

“P:Arb”, “P:Opt” and “P:2Stage”, respectively.

The second parameter we have to choose is how to select the set S. We consider two

possibilities, first we can let S be equal to all the dual columns. The second possibility is

to set S equal to all dual columns corresponding to primal constraints that are active at

the optimal root node solution (determined by either the exact or approximate root node

LP). The motivation for such a choice is discussed in Section 3.3. We denote the parameter

choices for the set S by “S:All” and “S:Act”. These settings give us six combinations to

compare.

Finally, we must choose how to handle infeasible nodes. In Section 3.6 we outlined

two strategies. The first strategy constructs an exact infeasibility certificate; it has the

advantage that it does not rely on existence of a cut-off bound, but the disadvantage that

it must compute an S-interior ray. The second strategy constructs a dual solution past the

cut-off bound; this strategy uses the same information as the standard project-and-shift, but

has the disadvantage that it relies on the existence of a primal cut-off bound. After testing

both of these strategies we found that on our test set the second strategy was slightly faster
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(4% in geometric mean). Therefore, all subsequent computational tests employ this strategy.

We did observe the first strategy to be faster when used on some infeasible instances not

contained in our test set where no cut-off bound was available, so there are situations when

activating it is helpful.

4.3 Root Node Performance

First we compare the behavior at the root node, evaluating the quality of the bound produced

and the time necessary to compute it. Note that the dual bounding time required at the

root node is dominated by the solution of the auxiliary problem in Algorithm 2, which in

each case involves solving one or two exact LPs. Table 3 compares the relative quality of

the dual bounds at the root node. The bound quality is measured as the relative difference

d = (cLP −cb)/max{1, cLP , cb} where cLP is the exact optimal value of the root node LP, cb is

the bound value, and the overline notation represents the floating-point upper approximation

of these numbers. The FP upper approximations are used because this is how the values

are compared in the numeric component of the hybrid symbolic-numeric implementation

in (Cook et al., 2011). For each setting we list how many problems had bound quality in

different ranges where “Zero” is no difference, “S” indicates d ∈ (0, 10−9], “M” indicates

d ∈ (10−9, 10−3], “L” indicates d ∈ (10−3,∞), and “∞” indicates that no finite bound was

returned. The column marked “DB Time” in Table 3 gives the geometric mean of the time

required to compute the dual bound, which is dominated by the setup phase of the algorithm

described in Algorithm 2. Bound computations requiring less than one second are rounded

up to one second, this occurs on more than half of the problems. As a point of reference we

also list the time required to solve the root node LP exactly (“ExactLP”); we observe that

for computing these single LP bounds, the project-and-shift method is more time consuming

than solving the LPs exactly. However, as we will see in the next section, when solving the

MIPs exactly by branch-and-bound this extra work at the root node does pay off and only

represents a small fraction of the total solution time.

Figure 1 represents the dual bound computation time for the different project-and-shift

variants in a performance profile. A performance profile is a representation of the solution

times which plots the distribution of the ratio of solution times for each solver when compared

to whichever solver was the fastest for each instance. The x-axis represents how many times

slower the solvers were, and the y-axis depicts the number of instances. Dolan and Moré
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Table 3: Relative bound quality and extra computation time (geom. mean) at root.

Setting Zero S M L ∞ DB Time (s)

S:Act;P:Opt 19 32 6 0 2 2.7

S:Act;P:Arb 19 34 4 0 2 3.0

S:Act;P:2Stage 18 37 2 0 2 4.1

S:All;P:Opt 12 38 5 2 2 3.6

S:All;P:Arb 12 38 5 2 2 3.0

S:All;P:2Stage 12 40 3 2 2 5.9

ExactLP 59 - - - - 1.3
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Figure 1: Comparison of extra time for safe bounds at root node.

(2001) given a more detailed description of performance profiles and discuss their strengths

for visually representing results of optimization solvers.

We now remark on the relative quality of the bounds produced by these settings. Choos-

ing S equal to the active columns leads to increased bound quality, as was predicted. The

selection of the interior point also impacts the quality, with the arbitrary interior point giving

the worst bounds, and the two stage problem producing better bounds on average. Regard-

ing the root node computation time, the two stage problem leads to a significant increase

in the solution times compared to the other methods. The other selections of the S-interior

point lead to varied computation time; the setting “P:Opt” could be faster in some cases due

because its auxiliary problem has less variables, and the setting “P:Arb” may be faster in

others because it may require less pivots to solve the auxiliary LP problem. Also, in general,
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Table 4: Summary of overall performance.

Geometric mean for instances
solved by all settings (49)

Setting slv Nodes Time (s) DB Time (s)

S:Act;P:Opt 50 19 345 453.1 308.8

S:Act;P:Arb 50 19 335 471.8 324.8

S:Act;P:2Stage 50 19 329 502.4 376.5

S:All;P:Opt 50 19 452 454.9 307.5

S:All;P:Arb 50 20 194 475.4 318.3

S:All;P:2Stage 50 19 562 542.3 417.1

ExactLP 52 19 169 846.2 679.3

choosing S equal to the active columns instead of all columns reduces the solution time.

4.4 Branch-and-Bound Performance

Table 4 gives a summary of the overall performance in the branch-and-bound process of

the six variations of the project-and-shift method, compared to the dual bounding strategy

of solving each node LP exactly, denoted “ExactLP”. The table includes how many of the

problem instances were solved within the 24h time limit. Then for the 49 problems solved by

each of these methods we display the geometric means of the node counts, solution time, and

the amount of solution time used for computing safe dual bounds. Here, the column “Time”

reports the time for the complete solution procedure in the hybrid branch-and-bound process

which includes solving approximate LP relaxations in floating-point arithmetic, computing

exact primal solutions and computing valid dual bounds. The column “DB Time” reports

the time used to compute valid dual bounds; in the case of the project-and-shift algorithm

this includes all of the steps of Algorithms 2 and 3, but does not include the time spent to

compute approximate LP solutions, which are passed to Algorithm 3 as an input. This table

gives an indication that the time spent calculating valid dual bounds divided by the number

of nodes processed is considerably lower than the amount of time required to perform the

setup phase of the algorithm and compute a single bound which is reported in the “DB

Time” column of Table 3. This demonstrates that reusing the information computed by

Algorithm 2 throughout the tree really does pay off.

Further details are given in Table 5, which shows the individual solution times and

Table 6, which gives the number of nodes required to solve each MIP. Solution times that
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Figure 2: Comparison of time needed to solve each problem instance.

are within 5% of the fastest method have been made bold in Table 5. Instances containing

variables with upper bound u = ∞ or lower bound l = −∞ are indicated by a “×”. Finally,

Figure 2 gives a performance profile comparing the individual solution times. In order to

make this figure more readable, not all of the settings are included.

Concerning the overall performance we first observe that “ExactLP” is slower than the

project-and-shift variants by a factor of nearly 2 in geometric mean. When comparing the

variants of the project-and-shift algorithm we observe that the setting “S:Act;P:Opt” has the

fastest average solution time, but is closely followed by “S:All;P:Opt”. One explanation of

why choosing all columns may lead to faster solution times in some cases is as follows. If

we restrict the column choice, this will change the behavior of the LU factorization code,

possibly resulting in more fill-in and longer solution times. In contrast, if the rectangular

LU factorization code is working with all columns of the dual it could pivot on the sparsest

columns, i.e., those coming from the existing primal variable bounds.

On problems solved to optimality, the node counts were often similar between the different

methods. This indicates that although the project-and-shift method is producing LP bounds

that are not as tight as the exact LP solutions, they are often good enough that they do

not significantly increase in the number of branch-and-bound nodes. However, there were

some specific instances where the node counts differed considerably between methods such as

rentacar. We also note that for some instances the “ExactLP” method uses a small number
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Table 5: Time (s) needed to solve each problem instance.

Example S:Act;P:Opt S:Act;P:Arb S:Act;P:2Stage S:All;P:Opt S:All;P:Arb S:All;P:2Stage ExactLP

30:70:4 5:0 95:100 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 76.9

acc-0 3.3 3.1 6.0 4.6 3.3 6.7 4.1

acc-1 337.1 335.8 342.0 338.6 338.3 346.8 433.0

acc-2 45.8 45.7 50.1 47.8 45.7 54.8 56.5

air03 30.1 24.4 31.6 54.7 26.6 62.7 3.4

air05 15474.3 15114.2 16131.9 14036.7 13883.2 14638.0 19348.7

×bc1 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0

×bell3a 564.4 527.4 542.7 684.0 704.2 680.3 3674.9

×bell5 480.0 447.9 473.6 578.1 595.1 584.2 3671.0

×bienst1 296.0 328.6 309.8 301.9 299.5 305.9 811.1

×bienst2 3768.6 4271.1 3943.7 3698.5 3689.5 3713.9 8613.2

×blend2 207.0 241.8 226.8 253.8 248.8 239.8 583.5

×dano3 3 121.2 394.0 424.6 95.9 250.4 612.0 401.8

×dano3 4 415.8 749.5 705.0 246.3 484.8 762.0 1864.3

×dano3 5 8033.9 8496.8 8908.5 3680.9 3967.0 4446.2 62674.6

×dcmulti 115.6 116.9 116.2 114.4 113.1 114.8 215.3

×dsbmip >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0

× egout 121.5 119.5 125.4 129.2 130.4 131.6 359.6

eilD76 14369.9 14236.4 14383.4 12029.5 11397.3 12300.7 16786.7

enigma 162.7 153.7 143.8 146.4 141.4 146.2 353.1

×flugpl 1.0 1.0 1.0 1.0 1.0 1.0 1.6

×gen 397.0 401.8 384.8 421.9 440.6 424.4 613.4

×gesa3 2645.3 2571.5 2729.2 2749.5 2793.2 2756.3 4696.8

×gesa3 o 3366.9 3299.2 3487.2 2817.7 2825.2 2893.5 5860.4

irp 33107.1 31734.0 33192.6 41963.4 38911.5 41982.9 43510.8

×khb05250 27.7 27.9 27.9 29.2 27.7 27.9 43.5

l152lav 332.3 332.9 335.1 341.5 344.8 342.3 279.1

lseu 730.1 695.5 737.8 870.2 868.0 860.1 865.6

×markshare1 1 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0

×markshare4 0 1551.6 1599.1 1571.0 1274.6 1246.2 1270.7 22074.2

mas76 82284.8 >86400.0 73859.6 41521.3 51570.2 41074.9 >86400.0

mas284 72074.8 76158.6 66608.3 19623.2 70957.7 20041.7 47618.4

×misc03 4.0 4.0 3.9 4.9 4.7 4.9 4.7

×misc06 14.2 13.7 14.2 14.6 14.1 15.1 283.8

×misc07 2550.8 2500.0 2534.3 2769.0 2769.5 2815.7 3564.5

mod008 283.7 246.0 285.2 251.3 246.3 251.6 587.5

mod010 2911.3 2909.7 2858.7 3409.6 3409.1 3440.1 2682.4

×mod011 67906.5 69352.2 70488.6 78352.3 61957.5 69642.6 80443.6

neos5 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 63644.7

neos8 8593.2 8691.4 8695.3 9602.5 9222.7 12841.2 72125.8

×neos11 2714.3 2778.9 2671.2 2823.3 2729.9 2744.9 3059.2

×neos21 15662.0 15680.2 16204.2 16833.9 16168.0 18013.6 23479.2

neos897005 706.1 577.5 933.8 1188.0 570.2 13551.0 392.8

nug08 19.0 18.5 38.0 20.5 19.3 47.1 42.3

nw04 16235.5 16321.4 16609.8 19473.7 17320.9 20553.9 12097.7

p0033 1.0 1.0 1.0 1.3 1.3 1.3 1.3

p0201 19.5 17.8 17.8 19.8 19.3 19.8 30.5

×pk1 6509.8 7461.9 6490.5 3665.1 3614.5 3602.8 21516.5

qap10 573.9 572.0 697.1 575.9 569.1 1149.5 2120.3

×qnet1 o 12195.0 12824.0 12177.0 13677.7 14478.3 13598.0 19706.4

× ran13x13 >86400.0 79314.8 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0

× rentacar 70.3 156.5 254.0 66.4 436.4 109.2 47.3

rgn 28.9 26.9 28.7 33.0 33.2 33.7 145.2

stein27 2.8 2.7 2.8 3.1 3.1 3.0 4.9

stein45 97.4 96.6 97.5 112.3 108.0 108.7 182.0

× swath1 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 69978.7

× swath2 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0

vpm1 25645.6 23236.9 24279.5 27183.0 24578.9 27156.8 20405.2

vpm2 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0 >86400.0
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Table 6: Branch-and-bound nodes needed to solve each problem instance.

Example S:Act;P:Opt S:Act;P:Arb S:Act;P:2Stage S:All;P:Opt S:All;P:Arb S:All;P:2Stage ExactLP

30:70:4 5:0 95:100 >250 119 >305 404 >252 550 >276 163 >329 978 >279 885 190

acc-0 52 52 52 52 52 52 52

acc-1 3 224 3 224 3 224 3 224 3 224 3 224 3 224

acc-2 241 241 241 241 241 241 241

air03 21 21 21 21 21 21 21

air05 94 269 94 269 94 274 94 269 94 269 94 274 94 283

×bc1 >225 758 >171 680 >214 798 >67 577 >85 302 >71 891 >52 189

×bell3a 362 609 362 608 362 611 362 620 362 618 362 621 362 615

×bell5 408 929 409 007 409 000 408 938 408 960 409 000 408 992

×bienst1 42 018 42 017 42 017 41 892 41 889 41 895 40 898

×bienst2 447 178 447 177 447 176 447 285 447 282 447 283 447 177

×blend2 44 988 44 990 44 988 45 006 44 986 44 989 44 992

×dano3 3 40 40 40 40 40 40 40

×dano3 4 193 193 193 193 193 193 193

×dano3 5 4 722 4 718 4 720 4 726 4 726 4 724 4 718

×dcmulti 20 133 20 133 20 133 20 133 20 133 20 133 20 133

×dsbmip >695 513 >689 797 >679 733 >674 224 >682 417 >679 723 >191 210

×egout 60 871 60 871 60 871 60 871 60 871 60 871 60 871

eilD76 236 305 236 305 236 305 236 305 236 305 236 305 236 303

enigma 128 058 128 058 128 058 128 058 128 058 128 058 128 058

×flugpl 3 519 3 519 3 519 3 519 3 519 3 519 3 519

×gen 34 100 34 100 34 100 34 100 34 100 34 100 34 100

×gesa3 128 210 128 210 128 210 128 210 128 210 128 210 128 210

×gesa3 o 178 437 178 437 178 437 178 437 178 437 178 437 178 437

irp 116 177 116 182 116 177 116 177 116 163 116 177 116 177

×khb05250 6 606 6 606 6 606 6 606 6 606 6 606 6 606

l152lav 11 933 11 929 11 933 11 933 11 930 11 933 11 934

lseu 795 963 795 963 795 963 795 955 795 944 795 961 795 963

×markshare1 1 >126 148 808 >126 736 454 >126 601 178 >156 379 267 >156 943 548 >156 918 719 >10 278 529

×markshare4 0 3 826 128 3 826 128 3 826 128 3 826 128 3 826 128 3 826 128 3 826 096

mas76 7 568 599 >7 357 073 7 265 136 10 425 959 7 415 304 10 312 915 >3 593 826

mas284 1 894 754 1 709 650 1 801 863 2 493 189 7 556 747 2 475 923 1 709 652

×misc03 1 561 1 561 1 561 1 561 1 561 1 561 1 559

×misc06 306 306 306 306 306 306 255

×misc07 368 179 368 179 368 180 368 182 368 181 368 175 367 676

mod008 59 211 59 211 59 211 59 211 59 211 59 211 59 211

mod010 93 732 93 748 93 730 93 731 93 741 93 730 93 730

×mod011 421 651 421 651 421 651 421 651 421 650 421 651 421 651

neos5 >28 412 949 >29 163 913 >28 757 034 >40 773 418 >41 780 866 >40 946 550 26 371 494

neos8 24 928 24 930 24 936 24 928 24 928 24 928 25 091

×neos11 32 006 32 006 32 006 32 004 32 004 32 004 30 020

×neos21 830 716 830 716 830 716 830 726 830 718 830 726 818 611

neos897005 86 86 86 86 86 86 86

nug08 143 143 143 143 143 143 143

nw04 10 826 10 815 10 826 10 826 10 818 10 826 10 826

p0033 2 670 2 670 2 670 2 670 2 670 2 670 2 670

p0201 5 788 5 780 5 780 5 780 5 780 5 780 5 780

×pk1 1 793 664 1 793 664 1 793 664 1 793 664 1 793 664 1 793 664 1 793 656

qap10 246 246 246 246 246 246 246

×qnet1 o 730 464 730 655 730 465 730 424 730 378 730 428 731 031

×ran13x13 >26 422 361 27 604 880 >26 452 160 >25 411 352 >26 326 915 >25 422 590 >27 372 116

×rentacar 165 179 167 165 341 219 156

rgn 10 249 10 249 10 249 10 249 10 249 10 249 10 219

stein27 4 031 4 031 4 031 4 031 4 031 4 031 4 031

stein45 58 329 58 329 58 329 58 333 58 331 58 333 58 333

×swath1 >1 677 398 >1 665 414 >1 647 016 >1 685 890 >1 586 738 >1 684 253 560 996

×swath2 >1 664 965 >1 681 828 >1 664 681 >1 659 503 >1 658 897 >1 639 540 >716 964

vpm1 7 773 158 7 773 158 7 773 158 7 773 158 7 773 158 7 773 158 7 773 158

vpm2 >21 823 235 >23 283 669 >23 342 584 >22 477 542 >23 009 667 >21 671 938 >17 032 855
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of extra nodes when compared to some versions of the project-and-shift method. This may

seem counterintuitive because the exact LP solver will produce the tightest possible bound

at each node, but this phenomenon is explained by the use of the best-bound node selection

rule where differing bounds will change the order in which nodes are processed, possibly

leading to a small variation in node counts. We can also note that in Table 4, “ExactLP”

processes fewer nodes on average than any of the other methods, as would be expected.

We now compare the speed of the primal-bound-shift algorithm (described in Section

2) with the project-and-shift algorithm and the strategy of solving each node LP exactly.

This comparison is made on the 28 instances in our test set that have finite upper and

lower bounds on all variables, but is limited to 24 of these instances that were solved by all

three methods within the time limit. The geometric mean of solution times was: primal-

bound-shift 77.0 seconds; project-and-shift (“S:Act;P:Opt”) 385.0 seconds; exact LP 510.4

seconds. When solved by the inexact floating-point branch-and-bound version of SCIP, the

geometric mean solution time was 58.4 seconds. These computations support the claim that

primal-bound-shift requires very little overhead and is an excellent choice for computing

valid bounds when it is applicable. Cook et al. (2011) presents more detailed computational

results on these, and other, valid dual bounding methods.

5. Conclusion

We have described a new method for computing valid dual bounds. The dual bounds are

computed without requiring the primal LP to have upper and lower bounds on all variables.

It needs the exact solution to an LP at the root node and an exact LU factorization, but

once this information is computed the LP bounds at each node of the branch-and-bound tree

can be computed quickly. We demonstrated this method to be more generally applicable

than the primal-bound-shift method, and faster than solving an exact LP at each node.

We also remark that the project-and-shift method is capable of computing bounds in a

branch-and-cut framework, although this has not yet been tested computationally.

The fact that the conditions required by the project-and-shift method were satisfied on

most instances also says something about the problem structure of the MIPs contained in

our test set. Namely, the conditions that the dual constraint matrix has full row rank and

that none of the dual inequalities are implied equalities are often satisfied on these real-world

problems.
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There are possible future directions that could be explored to improve the speed of the

methods developed in this article, or to apply similar ideas in other places. One possible

future direction would be looking at a combination of the project-and-shift method and

the related method of Althaus and Dumitriu (2009). First, the auxiliary LP to identify the

polyhedral structure given in Section 3.4 could be used in place of the iterative algorithm

used by these authors to determine implied equalities of the system. It is also possible that

interval methods could be applied to the project-and-shift method to eliminate some of the

exact computation and further increase the speed.

As a final remark we note that the paper Cook et al. (2011) contains a detailed com-

putational study comparing the project-and-shift method with several other dual bounding

methods. It also describes an sophisticated automatic strategy for switching between these

different dual bounding methods at each node of the branch-and-bound tree. The project-

and-shift method is an important component of this selection strategy, further validating its

usefulness.
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