
A COMPUTER-AIDED EXAMINATION OF SOME

CLASSES OF HYPERCUBE-LIKE SUPER

FAULT-TOLERANT HAMILTONIAN NETWORKS

EDDIE CHENG, DANIEL STEFFY AND AARON ZENG

Abstract. An r-regular graph G = (V,E) is k-fault-tolerant Hamil-
tonian if G − F is Hamiltonian for every set F ⊆ V ∪ E of faulty

elements where |F | ≤ k. Similarly, G is k-fault-tolerant Hamil-

tonian connected if G − F is Hamiltonian connected for every set
F ⊆ V ∪ E of faulty elements with |F | ≤ k. If an r-regular graph

is both (r − 2)-fault-tolerant Hamiltonian and (r − 3)-fault-tolerant

Hamiltonian connected, we say that it is super fault-tolerant Hamil-
tonian. In this paper, we discuss different classes Gr of graphs which

are recursively defined by Gr = ∪i,j(Gi ⊕Gj) for all Gi, Gj ∈ Gr−1;

G0⊕G1 refers to the set of graphs obtained by joining each vertex in
G0 to exactly one in G1 and vice versa. It was proven by Chen, Tsai,

Hsu, and Tan in 2004 that if G0 and G1 are super fault-tolerant

Hamiltonian r-regular graphs where r ≥ 5, then every graph G in
G0 ⊕G1 is an (r + 1)-regular graph that is also super fault-tolerant

Hamiltonian. Using a computer program, we demonstrate the super
fault-tolerant Hamiltonicity of several classes of graphs.

Keywords: Hamiltonian, Hamiltonian-connected, classes of recursively
defined graphs.

1. Introduction

Interconnection networks are important in parallel computing. For ex-
ample, the IBM Blue Gene Project uses a 3-dimensional torus to connect
65,536 nodes. The first major class is the classical n-cubes. The n-cube
is defined as having the vertex set of binary strings of length n. Two ver-
tices are adjacent if their strings differ in exactly 1 bit. However, they can
also be defined recursively. Interconnection networks can be represented by
graphs where vertices are computer processors and edges are links between
processors. In this paper, we use standard graph theory terminologies and
notations. Since our interests are interconnection networks and they are
usually regular, we will only consider regular graphs in this paper. A graph
is Hamiltonian if it has a cycle containing every vertex, and a graph is

Aaron Zeng started this project at the 2013 Oakland University Summer Mathematics
Institute.

1

2

Hamiltonian-connected if for every pair of distinct vertices u and v, there
is a path between u and v containing every vertex. We note that if a
graph has at least three vertices, then a Hamiltonian-connected graph is
Hamiltonian. The properties of Hamiltonicity and Hamiltonian connect-
edness are important topics in the study of interconnection networks and
have been studied extensively. Since processors and links between them
may fail in a computer system, many researchers focus on the properties
of interconnection networks when vertices and/or edges are deleted (rep-
resenting processors and/or links failure). In terms of Hamiltonicity, we
consider the following: An r-regular graph G = (V,E) is k-fault-tolerant
Hamiltonian if G − F is Hamiltonian for every set F ⊆ V ∪ E of faulty
elements where |F | ≤ k. Of course, the objective is to find the best (max-
imum) k. This is an NP -hard problem. There is an obvious bound, that
is , k ≤ r − 2. An r-regular graph is maximally fault-tolerant Hamiltonian
if it is (r − 2)-fault-tolerant Hamiltonian. Similarly, G is is k-fault-tolerant
Hamiltonian-connected if G − F is Hamiltonian-connected for every set
F ⊆ V ∪ E of faulty elements where |F | ≤ k. As before, we want the best
k and that this is an NP -hard problem. In this case, the obvious bound
is k ≤ r − 3, and G is maximally fault-tolerant Hamiltonian-connected if it
is (r− 2)-fault-tolerant Hamiltonian-connected. Moreover G is super fault-
tolerant Hamiltonian if it is both maximally fault-tolerant Hamiltonian and
maximally fault-tolerant Hamiltonian-connected. In this paper, we provide
several classes of super fault-tolerant Hamiltonian graphs based on a known
result and via a computer package.

The class of bijective connection networks (BC networks) is defined re-
cursively as follows: Let H1 = {K2} and for i ≥ 2, let Hi be the set of all
graphs that can be constructed by taking two (possibly the same) elements
H1 = (V1, E1) and H2 = (V2, E2) from Hi−1 (if we take the same element,
we will assume they are two different copies and so V1 ∩V2 remains empty)
with a bijection f : V1 −→ V2 to form the graph H = (V1∪V2, E1∪E2∪M)
where M = {(v, f(v)) : v ∈ V1}. This class of networks include a num-
ber of networks such as hypercubes, crossed cubes and twisted cubes.
We note that BC networks are triangle-free, that is, they do not con-
tain a K3 as a subgraph. The class of matching composition networks
(MC networks or simply MCN’s) is defined as follows: Let G1 = (V1, E1)
and G2 = (V2, E2) be two graphs with |V1| = |V2|, f : V1 −→ V2 be
a bijection and M = {(v, f(v)) : v ∈ V1}; then construct the graph
G = (V1 ∪ V2, E1 ∪ E2 ∪ M). We remark that this is called matching
composition network as M is a perfect matching in G. Often G is denoted
by G(G1, G2,M). Moreover, we let G1 ⊕ G2 denote the set of graphs of
the form G(G1, G2,M) for all possible M . Of course, one can replace H1

by any set of graphs with the same number of vertices and the same regu-
larity. Let R be a set of graphs with such properties. Then R-composition

3

graphs can be defined recursively as follows: Let R1 = R and for i ≥ 2, let
Ri = ∪H1,H2∈Ri−1(H1 ⊕H2).

2. A known result and motivation

The following result of Chen, Tsai, Hsu and Tan motivated us for the
problem in this short note.

Theorem 2.1 ([1]). Let R ≥ 5. Let G0 and G1 be r-regular super fault-
tolerant Hamiltonian graphs with the same number of vertices. Then every
graph in G0 ⊕G1 is (r + 1)-regular and super fault-tolerant Hamiltonian.

From Theorem 2.1, we can see that R-composition graphs are natural
classes of graphs to consider. This motivated us to constructed classes ofR-
composition graphs with appropriate R’s. Given that we want the graphs
to be Hamiltonian-connected, the graphs in R cannot be bipartite. In the
next section, we present several such classes of graphs.

3. Classes of super fault-tolerant Hamiltonian graphs

The most basic class can be constructed using R = {K6}. Clearly K6

is 5-regular and super fault-tolerant Hamiltonian. Hence we can apply
Theorem 2.1 immediately to conclude that {K6}-composition graphs are
super fault-tolerant Hamiltonian. In fact, this applies to any Kn where n ≥
6. More interesting examples can be obtained by starting with K5 or K4.
Let’s first consider K5. It is 4-regular and super fault-tolerant Hamiltonian.
However, we need the graph to be at least 5-regular to use Theorem 2.1.
Nevertheless we can compute K5 ⊕K5, which contains exactly one graph,
namely, K22K5, that is, the Cartesian product of K2 and K5. Clearly
K22K5 is 5-regular and our computer program verifies that K22K5 is super
fault-tolerant Hamiltonian. Thus we may apply Theorem 2.1 to conclude
that {K5}-composition graphs are super fault-tolerant Hamiltonian.

We now start with K4, It is 4-regular and super fault-tolerant Hamil-
tonian. However, we need the graph to be at least 5-regular to use The-
orem 2.1. Nevertheless we can compute K5 ⊕K5, which contains exactly
one graph, namely, K22K4. We apply ⊕ one more time and consider
(K22K4) ⊕ (K22K4). It turns out that there are 38 non-isomporphic
graphs in this set. Our computer program verifies that K22K4 and each
of the 38 graphs in (K22K4)⊕ (K22K4) is super fault-tolerant Hamilton-
ian. Thus we may apply Theorem 2.1 to conclude that {K4}-composition
graphs are super fault-tolerant Hamiltonian. We summarize our discussion
in the next result.

Theorem 3.1. Let n ≥ 4. Then {Kn}-composition graphs are super fault-
tolerant Hamiltonian.

4

We tested another class of graph with the starting graph K6−pm, that is
K6 with a perfect matching deleted. It is a 4-regular graph. We computed
(K6−pm)⊕ (K6−pm), which consists of three graphs and our computer
programs verifies that all these graphs are super fault-tolerant Hamiltonian.
Therefore we have the following result.

Theorem 3.2. Let n ≥ 4. Then {K6−pm}-composition graphs are super
fault-tolerant Hamiltonian.

As we have indicated, computer programs were used in the computation.
These programs are written in Python [3] and make use of library functions
in the NetworkX package [2], which provides algorithms for graph theoretical
computation.

One of the issues with generating these graphs by computer is the pos-
sibility of isomorphism. For example, (K22K4) ⊕ (K22K4) contains 38
non-isomorphic graphs. However, näıvely generated, the set may contain
8! = 40320 graphs with many duplicates. Therefore, it is of utmost impor-
tance to be able to eliminate isomorphs so that the next iteration can be
computed in a reasonable amount of time. The NetworkX library provides
the method is isomorphic() to test whether two graphs are isomorphic
to one another. This lets us formulate an algorithm for finding the non-
isomorphic graphs in a set of generated graphs. As they are generated, we
keep a list of graphs that have already been seen. For each new graph,
we test it against each of the graphs in the list to see whether or not it is
isomorphic to a graph we have already seen. If so, we ignore the new graph
and generate the next one, but if not, we add the new graph to the list and
continue.

Let us consider one of the 38 graphs in (K22K4) ⊕ (K22K4). It is 5-
regular on 16 vertices. We need to delete 3 vertices in all possible way
to test Hamiltonicity in the resulting graph and we need to delete 2 ver-
tices in all possible way to test Hamiltonian connectedness in the resulting
graph. There are many graphs to test. Trying to eliminate duplicates takes
too long. For graph 23 in the list, it took 27706.80 seconds to eliminate
duplicates and 25.72 seconds to test whether these graphs are Hamilton-
ian and Hamiltonian connected. That’s over 7 hours. However, If we do
not eliminate duplicates and just test every possibility, it took only a mere
74.37 seconds in total. As a side note, this graph has 23, 600 possible
“faulty” graphs when generated näıvely, which was reduced to 11, 778 non-
isomorphic “faulty” graphs.

Computation time was recorded for the test of fault-tolerant Hamiltonic-
ity and the test of fault-tolerant Hamiltonian connectedness. The time
taken is shown below, in seconds:

5

Class of graphs Fault-tol. Ham. Fault-tol. Ham. con.
(K22K4)⊕ (K22K4) 2547.58 6179.08
K5 ⊕K5 14.45 1.55
(K6 − pm)⊕ (K6 − pm) 770.12 25.12

4. Conclusion

In this short note, we provided several classes of natural super fault-
tolerant Hamiltonian graphs. As a second objective, we would advocate
the package NetworkX due to its ease of use.

References

[1] Y.-C. Chen, C.-H. Tsai, L.-H. Hsu, and J. J. Tan. On some super fault-tolerant

hamiltonian graphs. Applied Mathematics and Computation, 148:729–741, 2004.
[2] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics,

and function using NetworkX. In Proceedings of the 7th Python in Science Conference

(SciPy2008), pages 11–15, Pasadena, CA USA, Aug. 2008.
[3] H. P. Langtangen. A Primer on Scientific Programming with Python. Springer, Dor-

drecht, The Netherlands, July 2009.

Eddie Cheng, Department of Mathematics and Statistics, Oakland Univer-
sity, Rochester, MI 48309, USA. Email: echeng@oakland.edu.

Daniel Steffy, Department of Mathematics and Statistics, Oakland Univer-

sity, Rochester, MI 48309, USA. Email: steffy@oakland.edu

Aaron Zeng, Massachusetts Institute of Technology, 77 Massachusetts Av-

enue, Cambridge, MA 02139, USA. Email: zeng.aaron.l@gmail.com

6

Figure 1. The 38 non-isomorphic graphs in (K22K4)⊕ (K22K4)

7

Figure 2. The three non-isomorphic graphs in (K6 −
pm)⊕ (K6 − pm)

