
Solving Very Sparse Rational Systems of Equations

William Cook and Daniel E. Steffy

School of Industrial and Systems Engineering

Georgia Institute of Technology

Efficient methods for solving linear-programming problems in exact precision rely on the solution

of sparse systems of linear equations over the rational numbers. We consider a test set of instances

arising from exact-precision linear programming and use this test set to compare the performance
of several techniques designed for symbolic sparse linear-system solving. We compare a direct exact

solver based on LU factorization, Wiedemann’s method for black-box linear algebra, Dixon’s p-

adic-lifting algorithm, and the use of iterative numerical methods and rational reconstruction as
developed by Wan.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra—
Sparse, structured, and very large systems (direct and iterative methods); G.1.6 [Numerical

Analysis]: Optimization—Linear programming; G.1.0 [Numerical Analysis]: General—Multi-

ple precision arithmetic

General Terms: Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Sparse matrices, rational systems, LU factorization, Wiede-

mann’s method, Dixon’s algorithm, linear programming

1. INTRODUCTION

Solving systems of linear equations is a fundamental mathematical problem. Sev-
eral methods have been proposed to efficiently solve rational or integer systems
of linear equations exactly [Dixon 1982; Kaltofen and Saunders 1991; Mulders and
Storjohann 1999; Dumas et al. 2002; Chen 2005; Chen and Storjohann 2005; Eberly
et al. 2006; Wan 2006]. Such methods rely on the ability to reconstruct rational
numbers from high-accuracy floating-point solutions, or from modular solutions.

In this study we seek to determine which exact method is best suited for the
type of linear systems of equations arising in the solution of real-world linear-
programming (LP) problems. Such problems tend to be very sparse and they have
been the focus of much research, due to the wide-ranging application of linear and
integer programming. Until recently, software developed to solve LP problems has
provided approximate floating-point solutions; commercial LP packages, such as
CPLEX [ILOG 2007], attempt to find solutions within fixed error tolerances. For
many practical applications, such approximate solutions are sufficient. Neverthe-
less, there is a demand for exact solutions to LP problems. Exact solutions allow
researchers to use linear programming in computer-assisted proofs, allow for sub-
routines in exact-precision integer and mixed-integer programming, and are used in
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other applications requiring certifiably correct solutions. An important example of
the use of exact LP methods is Hales’ proof of the Kepler Conjecture [Hales 2005].

An effective approach for solving LP problems exactly is to perform the simplex
algorithm using inexact floating-point precision, then use symbolic computation
to construct, check, and correct the final solution [Kwappik 1998; Dhiflaoui et al.
2003; Koch 2004; Applegate et al. 2007]. Our description of the technique follows
that adopted in the QSopt ex code of Applegate et al. [2007]. After performing
the simplex algorithm in floating-point precision, the LP solution includes a basis,
providing a square system of linear equations that defines that solution in terms
of the original input data. The primal and dual solutions associated with this
basis can be computed in full rational precision and checked to make sure they
satisfy the LP optimality conditions. If the solution is certified as optimal, it
is returned. Otherwise, the floating-point precision is increased on the fly and
more simplex pivots are carried out to find another solution, then the process is
repeated. A similar procedure is followed if a certificate for unboundedness or
infeasibility is returned. This incremental strategy is more efficient than carrying
out all computations in rational precision throughout the entire simplex method.
The exact solution of linear systems in this procedure is a bottleneck; solving these
systems quickly can have a large influence on the solve times. Finding a fast and
robust method for this setting is the objective of this study.

The focus of this paper is a comparison of four solution procedures for rational
linear systems. Our starting point is the LU-factorization routine developed in
the QSopt [Applegate et al. 2005] linear-programming code. This routine is en-
gineered specifically for the type of sparse matrices that arise in LP applications.
We adopt the QSopt routine in a direct LU-based solver, as well as an implementa-
tions of Dixon’s p-adic-lifting algorithm [Dixon 1982] and Wan’s iterative-refinement
method [Wan 2006]. We also consider a rational solver based on the black-box al-
gorithm of Wiedemann [1986]. All four methods are tested on a large collection of
instances arising in the exact solution of LP problems.

The paper is structured as follows. The testbed of problem instances is described
in Section 2. The four solution methods we consider are described in Section 3. Re-
sults from our computational study are presented in Section 4, and conclusions are
summarized in Section 5. The testbed of rational linear systems and the computer
codes for the rational solvers are freely available at

www.isye.gatech.edu/~dsteffy/rational

for any research purposes.
We refer the reader to [von zur Gathen and Gerhard 2003] for background ma-

terial in computer algebra and to [Chvátal 1983; Vanderbei 2001] for material on
the simplex algorithm.

2. TEST INSTANCES FROM LP APPLICATIONS

The linear-programming research community is fortunate to have several publicly-
available libraries of test instances. In our study we collected these instances to-
gether into a single testbed. The set includes the instances from NETLIB [Gay
1985], MIPLIB 3.0 [Bixby et al. 1998], MIPLIB 2003 [Achterberg et al. 2006],
the miscellaneous, problematic, and stochastic collections of [Mészáros 2006], the
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collection of [Mittelmann 2006], and a collection of traveling-salesman relaxations
[Applegate et al. 2006] from the TSPLIB [Reinelt 1991]. These collections are com-
prised of instances gathered from business and industrial applications, and from
academic studies. The problems range in size from several variables up to over one
million variables.

The 695 instances in our testbed were given to QSopt ex. For each instance that
was solved by the code, the optimal basis matrix was recorded. In several cases
an optimal solution was not found within 24 hours of computing time. For these
examples, the basis from the last exact rational solve employed by QSopt ex was
recorded.

When examining the resulting linear systems, we found groups of instances with
very similar characteristics. In these cases, we chose a representative system and
deleted the other similar instances. For example, the 37 instances delf000 up to
delf036 in the miscellaneous collection of [Mészáros 2006] were replaced by the single
instance delf000.

We also ran a pre-processing algorithm to repeatedly remove rows and columns
having a single nonzero component. Many such examples existed in our systems,
due to the inclusion of slack variables in the LP models. In the resulting collection
of reduced problems, we deleted all instances having dimension less than 100.

The final problem set contains 276 instances, with dimensions ranging from 100
to over 50,000. For each instance we have both the square basis matrix and the
corresponding right-hand-side vector. Within the computational results section,
Table VI includes information on the problem-set characteristics and Table VIII
includes details for selected instances.

3. SOLUTION METHODS

3.1 Direct Methods

The QSopt ex code is based on the floating-point LP solver QSopt [Applegate
et al. 2005], which adopts the LU-factorization methods described in [Suhl and
Suhl 1990]. We refer to the QSopt double-precision floating-point equation solver
as QSLU double. This solver was adapted by Espinoza [2006] to solve over alternate
data types, including rational numbers, using the GNU Multiple Precision Library
[GMP 2008], and it is included in the QSopt ex code. We refer to this rational
solver as QSLU rational. We created a version of the code to solve over word-
sized prime-order fields using a data type with optimized operations; we call this
finite-field solver QSLU ffield. Figure 1 gives a performance profile1 comparing
the speed of solving all instances in our test set using these three solvers. Table I
gives the geometric mean of the solve-time ratios, normalized by the solve time of
QSLU double.

While the double-precision and finite-field solvers are close in time, solving over
the rational numbers is considerably slower. This comes as no surprise, since stor-
ing and performing operations on full-precision rational numbers is computationally
expensive. This supports the idea that techniques for solving rational systems of

1A performance profile plots the number of instances solved within a factor x of the fastest method
time. The vertical axis represents the number of instances. The horizontal axis gives the solve-time

ratios.
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Fig. 1. Comparison of QSLU Solvers
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Table I. Relative Speed of QSLU Solvers

Solver Time Ratio

QSLU double 1.00
QSLU ffield 1.05

QSLU rational 89.72

equations that rely on fixed-precision solvers as subroutines could have advantages
over direct exact methods. We also tested a direct rational solver using the conju-
gate gradient method and the GMP library, programmed by Sanjeeb Dash of IBM,
and found it much slower than the rational LU-factorization method.

There were many characteristics of individual problems which influenced the
deficit in speed between the double-precision solver and the exact rational solver,
including the dimension and the complexity of the solutions. The ratio of 89.72
presented in the table can be seen as a characteristic of our problem set and a
bound on how much we could possibly hope to improve our speed over the rational
solver by using the double-precision and finite-field solvers as subroutines. From the
performance profile we also observe that the finite-field solver was the fastest solver
on some instances. This may seem surprising as finite-field operations are generally
slower than double-precision operations; one possible explanation is the simplifica-
tion of some operations in the code afforded by exact finite-field computation over
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numerical computation, such as checking if an element is zero.
Direct exact-precision methods are not usually thought of as being among the

fastest methods for solving systems of linear equations exactly. However, we ex-
perienced a reasonable level of success in the sparse setting with QSLU rational,
in some cases outperforming the other methods presented in this paper. A con-
siderable amount of the computational effort of a sparse LU solver is spent find-
ing permutations of the system to reduce the fill-in and to reduce the number of
arithmetic operations that must be performed. Such computation depends only
on the nonzero structure of the matrix, and this helps QSLU rational avoid many
full-precision arithmetic operations. In the dense setting, we expect a larger perfor-
mance gap between a direct rational solver and fixed-precision solvers. For dense
systems, BLAS routines [Lawson et al. 1979; Dongarra et al. 1990] can be used
for fast floating-point linear algebra, and Dumas et al. [2008] have introduced a
comparably fast system for dense linear algebra over finite fields.

3.2 Rational Reconstruction

3.2.1 Basic Results. The following well-known result is stated as it appears in
[Schrijver 1986] as Corollary 6.3a.

Theorem 3.1. There exists a polynomial-time algorithm which, for a given ra-
tional number α and natural number Bd, tests if there exists a rational number
p/q with 1 ≤ q ≤ Bd and |α − p/q| < 1

2B2
d

, and, if so, finds this (unique) rational

number.

This theorem provides a powerful tool for calculating exact solutions to rational
systems of equations Ax = b. If an upper bound Bd is computed for the denom-
inators of the components of x and a vector x̂ satisfying |x̂ − x|∞ < 1/2B2

d is
computed, then the theorem can be applied component-wise to x̂ to compute the
exact solution x. There is an analogous result using modular arithmetic.

Theorem 3.2. There exists a polynomial-time algorithm which, for given natu-
ral numbers n, M , Bn, Bd, with 2BnBd ≤M , tests if there exists a rational number
p/q with gcd(p, q) = 1, |p| < Bn, and 1 ≤ q < Bd, such that p = nq mod M , and,
if so, finds this (unique) rational number.

This result is a simplified restatement of Theorem 5.26 from [von zur Gathen and
Gerhard 2003]. Using this, a rational system of equations can be solved by scaling
the system to be integral, bounding the numerator and denominator of the solution
vector, computing a solution to the system modulo an appropriate integer M ,
and reconstructing the exact rational solution. The remaining techniques to solve
rational systems of equations discussed in this paper will rely on these two theorems.
The methods of determining exact solutions to rational systems of equations by the
corresponding algorithms will be referred to as floating-point rational reconstruction
and modular rational reconstruction, respectively. The first result is also often
referred to as Diophantine approximation.

The polynomial-time algorithms cited in these theorems are based on applying
the Extended Euclidean Algorithm (EEA) to find selected continued-fraction con-
vergents. Section 5.10 of [von zur Gathen and Gerhard 2003] gives a description of
modular rational reconstruction, including numerical examples, another description
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appears in [Kaltofen and Rolletschek 1989]. The EEA appears as Algorithm 3.6 in
[von zur Gathen and Gerhard 2003]. Some methods have been studied to acceler-
ate rational reconstruction, including [Pan and Wang 2003; 2004; Monagan 2004;
Lichtblau 2005; Khodadad and Monagan 2006]. In our implementation, we use
a technique, sometimes referred to as Lehmer’s GCD algorithm, to accelerate our
computations (see Algorithm 1.3.7 in [Cohen 2000]). The EEA involves successively
performing integer divisions. Lehmer’s algorithm accelerates the EEA computation-
ally by performing the integer divisions on approximations of the numbers instead of
on large integers. Specifically, in our routines we replace extended-precision integer
division with floating-point number inversion when possible, carrying out several
steps of the EEA based on truncated data and then synchronizing and updating
the full-precision data. We found this to speed up the rational reconstruction by at
least a factor of two, and more with large inputs. Collins and Encarnación [1995]
also used Lehmer’s algorithm to speed up rational reconstruction and experienced
comparable levels of success.

3.2.2 Reconstruction Bounds. The bitsize of a nonzero rational number p/q is
log(|pq|), and the bitsize of a rational vector is defined to be the maximum bitsize of
its components. For a given instance, the exact bitsize of the solution is not known
without solving the system, but it can be bounded using Cramer’s rule. Cramer’s
rule states that for a square nonsingular system Ax = b, the ith component of the

solution vector is determined by xi = det(Ai)
det(A) where Ai is constructed by replacing

the ith column of A with b. Computing determinants exactly is computationally
expensive, so the Hadamard bound is typically used to provide an upper bound. The
Hadamard determinant bound states that det(A) ≤ ‖A‖n2 ≤ n

n
2 ‖A‖nmax. This gives

log(‖A‖2n−1
2 ‖b‖2) as a bound on the bitsize of x. Specifically, Bn = ‖A‖n−1

2 ‖b‖2 and
Bd = ‖A‖n2 give upper bounds on the numerator and denominator of the solution
of Ax = b that are valid for Theorems 3.1 and 3.2. Table II shows the bound on
solution bitsize generated by the Hadamard bound, along with the actual bitsize of
the solution, for several of the larger instances in our test set.

Table II. Actual Solution Size vs. Hadamard Bound

Problem Solution Bitsize Hadamard Bound

cont11 l 1263 4570016
gen1 439931 1046612

momentum3 159597 11521199

The examples in Table II illustrate that the bitsize of the solution can be much
lower than the Hadamard-based bound. This suggests that computation of mod-
ular and floating-point solutions based on the Hadamard bound can lead to un-
necessary computation and memory use. For the problem cont11 l, computing an
approximate solution with 4,570,016 bits for each component would require over 31
gigabytes of memory for storage alone, when a solution with 1,000 times fewer dig-
its gives sufficient information to successfully reconstruct the exact solution. For a
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more in depth investigation into the tightness of the Hadamard bound, see [Abbott
et al. 1999; Abbott and Mulders 2001].

As an alternative to the Hadamard bound, we can use smaller but possibly incor-
rect bounds, then verify the results that are obtained. In this scheme, we attempt
rational reconstruction on an approximate solution corresponding to the guessed
bound, and check the resulting exact solution for correctness. If it is correct, we can
terminate, and otherwise we increase the bound and repeat. Correctness of a can-
didate solution can be easily certified by evaluating the linear equations. In [Chen
2005; Chen and Storjohann 2005], this technique is referred to as output-sensitive
lifting. This technique is used in a different context by Dumas et al. [2001] where
it is referred to as early termination. This method is made especially practical
because while computing high-precision solutions by iterative methods, less-precise
solutions are encountered at intermediate steps without any extra computation,
giving an opportunity to try rational reconstruction. Chen and Storjohann also
provide a simple formula to certify solutions obtained via modular rational recon-
struction without evaluating all equations.

3.2.3 Vector Reconstruction. Reconstructing the solution vector of a system of
equations can be achieved by applying Theorem 3.1 or Theorem 3.2 component-
wise to approximate or modular solution vectors. Considering information from
the entire system of equations can lead to faster methods for reconstructing a
solution vector. We discuss two such techniques, one using the relationship of the
denominators of the solution components to accelerate rational reconstruction, the
second using the equations to deduce some values without reconstruction.

For many systems of equations, the denominators of the components of the so-
lution vector share common factors. The first method we look at exploits this
situation. This method is discussed in [Kaltofen and Saunders 1991; Chen and
Storjohann 2005] for use in modular rational reconstruction and we call it the
DLCM. The DLCM technique for modular reconstruction is well known and cur-
rently used in other software such as LinBox and NTL [Dumas et al. 2002; Shoup
2008]. Let ∆ be the least common multiple of the denominators of the components
that have been reconstructed so far. Suppose the next component of the solution
we reconstruct is p/q, from n,M,Bn, Bd, as in Theorem 3.2. Compute n′ = ∆n
mod M , then reconstruct p′/q′ from n′,M using bounds Bn, bBd/∆c, and assign

p

q
:=

p′

q′∆
.

Fixing ∆ as a factor of the denominator, and then reconstructing the remaining
factors of the denominator and the numerator, accelerates the routine because
rational reconstruction terminates faster when the denominator bound Bd is lower.
In fact, if q divides ∆ then p/q can be immediately identified by the rational-
reconstruction routine without any steps of the EEA. It is possible to reduce M
to a value M ′ ≥ M/∆, as described in [Kaltofen and Saunders 1991], to further
accelerate this procedure.

The DLCM technique can also be applied to accelerate floating-point rational
reconstruction. Suppose a component of the solution p/q is to be reconstructed
from an approximation α, and a common denominator ∆ of other components is
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known. Rational reconstruction is applied to find a rational number p′/q′ that best
approximates ∆α with denominator less than Bd/∆, and then the assignment

p

q
:=

p′

q′∆

can be made. Again, by assigning some factors of the denominator ahead of time,
we reduce the calculations in the rational-reconstruction routine.

We mention one possible drawback of this technique. For DLCM to work cor-
rectly, the bound Bd must be an upper bound on the size of the common denom-
inator of the entire solution vector, while component-wise rational reconstruction
only requires Bd to be a bound on the individual denominators of the solution vec-
tor’s components. The Hadamard bound given in the previous section will always
bound the common denominator. However, a smaller bound that is valid for each
component individually, but less than the common denominator of the components,
can cause this technique to fail. From the statements of the theorems, we see that
increasing the bound Bd necessitates the computation of approximate solutions
with more digits of accuracy, or solutions modulo a larger number. The following
example illustrates this possible drawback.

Example 3.1. If the solution to Ax = b is x = (1/2, 1/3, . . . , 1/pn) where pn
is the nth prime number, then a bound of Bd = pn will suffice for component-wise
rational reconstruction. However, the DLCM method requires the bound Bd to be
at least 2× 3× · · · × pn to terminate properly.

Despite the possible drawback highlighted in Example 3.1, this characteristic
could also prove advantageous in an output-sensitive lifting algorithm. Suppose
output-sensitive lifting is applied with some insufficiently large bounds Bn, Bd.
The DLCM method would recognize failure and terminate early after the common
denominator ∆ grows larger than Bd. Therefore, that rational-reconstruction at-
tempt with a bound too small to determine the actual solution would terminate
before reconstructing every component of the solution vector. This can avoid a
significant amount of computation that would otherwise be spent in failed vector
reconstruction attempts. This strategy is used by Chen and Storjohann [2005] to
reduce the overall time spent on rational reconstruction in their rational solver.
When reconstructing a vector component-wise a similar early stopping criterion
can be set by maintaining a common denominator of the reconstructed components
and terminating if it becomes larger than Bd.

The second technique we explored is the use of the equations from the system to
deduce some components of the solution vector. Once part of the solution vector is
reconstructed, it is possible that the known components, along with the equations,
will directly imply the values of unknown components. If the equations are sparse,
evaluating an equation to determine the exact rational value of an unknown solution
component could be faster than performing rational reconstruction to determine
that component. We call this method of reconstructing some components and then
deducing all implied components the ELIM technique. To apply this technique,
the primary challenge is to determine an order in which to consider components for
reconstruction, and to determine which equations to use for deducing values.

A matrix A is said to have lower bandwidth of p if aij = 0 whenever i > j + p
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[Golub and van Loan 1983]. The lower-bandwidth minimization problem is the
problem of performing row and column permutations on a matrix to minimize its
lower bandwidth. If the n × n matrix A defining a system of equations has lower
bandwidth of p, and the final p components of the solution vector are known exactly,
then all remaining components can be determined by solving a n−p lower-triangular
system of equations by backwards substitution. Determining the minimum number
of components of the solution vector that must be reconstructed, in order to deduce
the remaining portion of the solution vector from the equations, is equivalent to
the lower-bandwidth minimization problem.

We use a greedy heuristic, Algorithm 1, to determine the variable ordering. The
algorithm partitions the columns of A into a set R and an ordered list E. Variables
corresponding to columns in R will be reconstructed and variables corresponding
to columns in E will be deduced using equations from the system. A list L(i) for
i ∈ E is constructed such that L(i) gives an index to a row of A that has a nonzero
element in its ith column and has zeros in every column j appearing after i in the
list E. Thus, R ∪ E gives an ordering to reconstruct the variables, where every
variable in R is obtained by rational reconstruction and each variable i in E can
be deduced using constraint L(i) and the preceding variables. We use Aj to denote
the jth column of A, and we use ai to denote the ith row of A. The algorithm is
described in terms of deleting rows and columns of the matrix; after such deletions,
we maintain the original labeling of the remaining rows and columns.

Algorithm 1 Variable Ordering Algorithm

Input: Matrix A {From Ax = b}
Initialize: R = ∅, E = ∅
while A 6= ∅ do

Remove any all zero rows ai from A
if ∃i such that ai has a unique nonzero element aij then
E := E ∪ {j} {Variable j can be eliminated}
L(j) := i {Implied by constraint i}
Remove Aj ,ai from A

else
Choose Aj with the maximum number of nonzeros
R := R ∪ {j} {Mark column with most nonzeros for rational
reconstruction}
Remove Aj from A

end if
end while
Return: R,E,L

We found this heuristic effective in reducing the number of variables to be recon-
structed. Table III shows the number of variables that could be eliminated by the
routine, that is, the number of variables in the list E.

To illustrate the overall effectiveness of the DLCM and ELIM methods, Table
IV compares the solve times and loop count of an exact solver based on Dixon’s
method (introduced later) on our entire problem set. Details of the output-sensitive
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Table III. Percent of Variables Eliminated

Elimination % Instances (out of 276)

70%+ 219
80%+ 145

90%+ 66

95%+ 35

lifting used can be found in Section 4.1. The solve times are expressed as geometric
means of the ratios with the time needed for Dixon’s method using component-
wise rational reconstruction. It also shows the geometric mean of the ratios of
how many loops each method performed to achieve the final solution. The ratios
presented here compare the total solve times, of which the reconstruction is just
a part. This measure is used to consider the variation in solve times because the
ELIM method and the component-wise reconstruction are in some cases able to
construct a solution with less information than the DLCM method. We also tested
a combination of the two techniques, listed as “DLCM and ELIM” in the table. In
this case we applied the ELIM routine as it is described but applied the DLCM
method to reconstruct the first p components of the solution vector.

From this table we observe that both methods reduce the overall solve time by
approximately 60%. The loop ratio here indicates how many loops of p-adic lifting
(described in Section 3.4) were required to identify the correct solution by using
output-sensitive lifting. As we can see, the DLCM method required a geometric
average of 16 % more loops than the component-wise reconstruction, indicating that
the phenomenon shown in Example 3.1 does occur to some degree, although much
less dramatic than the worst case. Despite these extra loops, the huge speedup
and possibility of early termination gained at each reconstruction by the DLCM
method, over the component-wise computation, still allows the DLCM to finish
much faster. We also see that the ELIM method is able to finish in fewer loops
than the component-wise reconstruction in some cases; this would occur when some
of the components that are deduced by the elimination routine have representation
too large to have been reconstructed component-wise. When combining DLCM and
ELIM we see that the number of loops again increases as the DLCM computation
terminates the procedure early, resulting in a slight slowdown over the pure ELIM
routine.

Table IV. Improvement Using Vector Reconstruction

Vector RR Method Solve Time Ratio Loops Count Ratio

Component-wise 1.00 1.00

DLCM 0.39 1.16
ELIM 0.40 0.97

DLCM and ELIM 0.41 1.15

From these tests see that the DLCM method is fastest for our set of instances. We
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therefore use DLCM throughout our modular and floating-point rational-reconstruction
routines for the remainder of the paper. Note, however, that the ELIM method is
nearly as fast, and on certain classes of sparse problems it may be faster. Dixon’s
method uses modular rational reconstruction, but in our tests we noticed similar
acceleration of the floating-point reconstruction routine using these techniques.

We also performed tests comparing the speed of the component-wise and DCLM
methods for reconstructing solution vectors, excluding the time required to solve
the linear system. To make this comparison we considered the solution vector from
each problem. We determined a bound for the component-wise reconstruction to
terminate correctly, which was B1 = 2B2 where B is the largest numerator or
denominator in any component of the solution. We also computed a bound valid
to reconstruct the vector using the DLCM method, which is B2 = 2B2 where B is
the largest of the numerator in any component of the solution or the least common
denominator for the solution vector, whichever is larger. We found that on 129
out of 276 problems the bounds were the same, and that the geometric average of
log(B2)/ log(B1) was 1.21, which corresponds to the loop ratio in Table IV.2 As we
saw in Table IV, DLCM was still a faster overall strategy despite these extra loops,
but there were some instances where this ratio was quite large and effected speed.
On some problems this ratio was as high as 66, and the Dixon solver using output-
sensitive lifting and component-wise reconstruction was over 100 times faster than
the DLCM-based Dixon solver. We also considered the time required to reconstruct
the solution by component-wise reconstruction at B1, divided by the time to use
DLCM vector reconstruction at bound B2; we found the geometric mean of these
ratios to be 7.80. To have a pure direct comparison of these we also compared
component-wise reconstruction and DLCM vector reconstruction both at B2 and
found their ratio to be 8.92, and found DLCM to be as much as 75 times faster on
individual problems. These final numbers indicate that, although component-wise
reconstruction can be faster on some problems, the DLCM method can provide a
huge speedup overall.

3.3 Iterative Refinement

Applying Theorem 3.1, a rational system of equations can be solved exactly given
a bound on the size of the denominators of the solution and an approximate so-
lution within a required degree of accuracy. The previous section addressed how
to reconstruct rational solutions and how to choose a proper bound. Here we
discuss a method to determine the approximate solution. When the number of dig-
its of accuracy required of the approximate solution is large, solving the system in
extended-precision floating-point arithmetic can be as slow as solving the system di-
rectly in rational precision, or slower. The iterative refinement procedure, described
below, allows us to use repeated approximate floating-point solves to construct an
extended-precision solution, taking advantage of the speed of a floating-point LU

2One would expect this number to match the 1.16 in Table IV. The difference occurs because the
table is generated by timings on our Dixon solver which uses an output-sensitive lifting scheme
that will not attempt rational reconstruction at every loop. When the bounds B1, B2 are close to

each other the solvers will often finish at the same time, even if the bounds are not equal. As we
are taking the geometric mean in both cases this explains the gap; the arithmetic mean would be

expected to be the same.
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solver.
Iterative refinement is the process of finding and refining an approximate solution.

Once a system is solved approximately, the exact error of the approximate solution
can be determined, and further approximate solves can be used to help correct the
error. Repeating this process gives solutions that are increasingly accurate. State
of the art floating-point solvers typically perform iterative refinement to refine a
double-precision solution so that the backwards error is close to machine epsilon.

Ursic and Patarra [1983] adopted iterative refinement to obtain high-accuracy
approximate solutions, and combined this with rational reconstruction to solve lin-
ear systems of equations exactly. Wan [2006] introduced an improved version of this
algorithm, reducing the number of extended-precision operations that are required.
Wan’s method works with systems of equations that are integer; rational systems
are handled by scaling the entries to be integral. An analysis of the complexity of
this method, and comparison with other techniques, is presented in [Wan 2006].

An outline of Wan’s method is given in Algorithm 2. A solution x/D, where x
is integral and D is an integer common denominator, is constructed and refined to
become more accurate. At each step, a scaled measure of the error is maintained:
∆ = (b − A(x/D))D. The key advantage to this algorithm, over previous ones, is
that by scaling and rounding the approximate solutions to be integral at each step,
∆ is computed and updated exactly without using extended-precision arithmetic.
A scale factor α is chosen at each step, determining the factor by which the common
denominator D will be increased. The factor α is chosen relative to the accuracy
of the correction x̂ chosen at that step, and it is made as large as possible while
allowing the newly computed error measure ∆ to be stored exactly in standard
precision.

Algorithm 2 Iterative Refinement

Input: A, b {Ax = b is system to be solved}
Compute a numerical LU factorization of A
x := 0 {Numerator of the solution vector}
D := 1 {Common denominator of the solution vector}
∆ := b {Error measure of solution at each step}
while Desired Accuracy Not Achieved do

Compute x̂ :≈ A−1∆ {Using numerical LU factorization}
Choose an integer α < ||∆||∞

||∆−Ax̂||∞ {This is the scale factor}
Set [x̂] ≈ αx̂ {Round to the nearest integer}
∆ := α∆−A[x̂] {Update the residual}
D := D × α {Update the denominator}
x := x× α+ [x̂] {x/D becomes an increasingly accurate approximation}

end while
Return: x/D {Floating-point approximation meeting required accuracy}

We implemented a version of iterative refinement using Wan’s strategy and the
solver QSLU double. Incorrect choices of α can quickly cause the algorithm to
fail, so computing an error measure of the approximate solution x̂ at each step
to guide the selection of α is necessary. Note that scaling a rational problem to



Solving very sparse rational systems of equations · 13

be integral can create difficulties for numerical LU-factorization solvers, since some
entries can become very large. This problem is avoided by performing the numerical
LU factorization on the original unscaled form of the problem, then using the scaled
integral matrix only in the refinement steps of the algorithm.

Iterative refinement and rational reconstruction is a very effective method for
solving systems of equations exactly, often performing the fastest on our test set.
The drawback to this method is its vulnerability to numerical difficulties with
floating-point computations. We did experience some trouble on a small subset
of examples that were numerically unstable; other methods considered in this pa-
per do not share this problem.

3.4 Dixon’s Method

Dixon’s method [Wang 1981; Dixon 1982] for solving exact rational systems of
equations relies on Theorem 3.2. This algorithm is stated in terms of integer systems
of equations, so we first scale a rational system to be integer. In order to determine
a solution modulo a large number M , Dixon [1982] uses the p-adic-lifting procedure,
which constructs a solution modulo pk by successively solving systems of equations
modulo p. Algorithm 3 gives a description of p-adic lifting. This procedure can be
thought of as computing a base p representation of x from the bottom up, one digit
at a time.

Algorithm 3 p-adic Lifting

Input: A, b, p, k {Ax = b is system to be solved mod pk}
Set x := 0, d := b
for i = 0, . . . , k − 1 do
y := A−1d mod p {Solve system}
x := x+ ypi {This will set x = A−1b mod pi+1 }
d :=

(
d−Ay

p

)
{Compute residual of x in p-adic representation}

end for
Return: x {x = A−1b mod pk}

Dixon’s method for solving integral systems of equations can use any subroutine
to solve systems modulo a prime number p, and then apply p-adic lifting and
rational reconstruction to determine the exact solution. In our implementation, we
use QSLU ffield for the finite-field solves. For a nonsingular integer matrix A, A
mod p is nonsingular for a prime p if and only if p does not divide det(A). Instead
of computing det(A) to guide the choice of p, we can guess different primes until
an LU factorization is successful. The prime p is chosen small enough so that all
numbers can be stored as machine-precision integers.

The p-adic-lifting procedure can be thought of as an analogue to the iterative-
refinement method, since they both use fixed-precision solve routines iteratively
to build extended-precision solutions. One advantage Dixon’s method has over
iterative refinement is that the finite-field elements are stored exactly, leaving no
chance for numerical problems when performing calculations.
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For further detail and analysis of the complexity of Dixon’s method see [Dixon
1982; Mulders and Storjohann 1999; Chen 2005; Chen and Storjohann 2005].

3.5 Wiedemann’s Method

Wiedemann’s method for solving systems of equations over finite fields was intro-
duced in [Wiedemann 1986]. His method can calculate the minimum polynomial of
a matrix A, or of a sequence {Aib}∞i=0, over a finite field using a randomized algo-
rithm based on the Berlekamp-Massey algorithm [Berlekamp 1967; Massey 1969].
This gives an explicit formula for solving Ax = b:

c0I + c1A+ c2A
2 + . . . cmA

m = 0 =⇒ A−1b = −c−1
0 (c1b+ c2Ab+ . . . cmA

m−1b).

In both the computation and evaluation of the minimum polynomial, access to
the matrix is only needed as a matrix-vector multiplication oracle. Therefore,
Wiedemann’s method is referred to as a black-box algorithm, and it is particularly
suited for working with sparse matrices. A presentation of this technique is given
in Section 12.4 of [von zur Gathen and Gerhard 2003].

Dixon’s method for solving rational systems of equations relies on a finite-field
solve routine for each p-adic-lifting step. Replacing QSLU ffield with Wiedemann’s
method gives an alternative approach to solving systems of equations exactly. A
detailed description of Wiedemann’s method applied to solving rational systems of
equations, including complexity analysis, is given in [Kaltofen and Saunders 1991].

4. COMPUTATIONAL RESULTS

4.1 Implementation

We tested four methods in the C programming language to solve rational linear sys-
tems of equations: QSLU rational, iterative refinement, Dixon, and Wiedemann.
The rational-reconstruction routines used in the methods share a common struc-
ture, using the techniques detailed in Section 3.2. We implemented fast finite-field
operations, storing the elements as integers, pre-computing inverse tables, using
delayed modulus computation, and using floating-point operations to accelerate
multiplications. These techniques are standard and they are employed by other
software packages such as [Dumas et al. 2002; Shoup 2008].

When used, we attempted rational reconstruction with a frequency relative to
the number of loops in the iterative refinement/p-adic-lifting procedure. In [Chen
and Storjohann 2005], rational reconstruction is attempted every 10 loops. After
some experimentation, we found it effective to attempt rational reconstruction with
a geometric frequency; we choose specifically to attempt reconstruction when the
loop number is a power of two. Using this strategy, if the approximate solution
after k loops is sufficient to reconstruct the rational solution, then at most log(k)
unsuccessful attempts are made. We remark that if rational reconstruction is at-
tempted before enough loops are completed to accurately reconstruct the solution,
this can be recognized without reconstructing the entire vector, as mentioned in
Section 3.2.3. Therefore, failed attempts at reconstruction will stop before recon-
structing each component and thus have a considerably lower computational cost
than the final reconstruction step in which each component is reconstructed. De-
spite this fact we still found it computationally faster to attempt reconstruction
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less frequently. A more detailed analysis of our strategy for output-sensitive lifting
can be found in [Steffy 2009]. We also modified the geometric strategy slightly
by imposing a maximum number of loops between reconstruction attempts, giving
improved solve times for our problem set. A similar strategy is also employed and
analyzed by Chen and Monagan [2008] for solving linear systems over cyclotomic
fields. A description and analysis of output-sensitive lifting applied to determi-
nant computation can be found in [Kaltofen 2002]. A probabilistic output-sensitive
lifting strategy is used in [Emiris 1998] where it is applied to the computation of
integer hulls.

To verify the competitiveness of QSLU double, which was used as a subroutine
in iterative refinement, we compared it with the well-known solvers Pardiso [Schenk
and Gärtner 2004] and SuperLU [Demmel et al. 1999]. In Table V, it can be seen
that the QSLU double code was faster on average over our testbed of LP instances,
although Pardiso and SuperLU were faster on some individual problems. We may
not expect QSLU double to outperform Pardiso and SuperLU on other classes of
instances, as it was developed using a method engineered specifically to solve very
sparse bases arising in the solution of LP problems. In our use of QSLU double, we
perform two refinement steps in double precision to improve the double-precision
solution. SuperLU contains a similar refinement scheme. We measured the back-
ward relative error3 of the final solutions and found SuperLU to produce more
accurate solutions, with relative backward error average of 1.27e-16, compared to
1.58e-15 for QSLU double. We found Pardiso to achieve comparable errors on many
instances, but we experienced numerical difficulties on some examples, leading to
unsatisfied constraints. (The performance of the Pardiso and SuperLU codes are
compared with other numerical solvers in a nice computational study by [Gould
et al. 2007], covering symmetric systems.)

Table V. Numerical Sparse LU Solvers

Solver Time Ratio

QSLU double 1.00

SuperLU 2.36
Pardiso 2.50

We also compared our Wiedemann-based solver with the Wiedemann solver found
in LinBox 1.1.6 [Dumas et al. 2002]. On the instances both codes completed, we
found our new code to be 6.91 times faster by geometric mean, with ratios ranging
from 0.13 to 17.30. We also compared our Wiedemann finite-field solver against the
LinBox Wiedemann finite-field solver, which are used as subroutines in the rational
solvers, and found our solver to be 1.84 times faster, with ratios ranging from 0.013
to 3.50 4. These results suggest that the speedup in our rational solver comes

3The backward relative error of a solution x is defined to be maxi
|(Ax−b)i|∑

j |Aijxj |+|bi|
.

4A referee performed similar experiments on a smaller subset of our problems and observed our
Wiedemann rational solver to be 2.72 times faster and our Wiedemann finite-field solver to be on

average 62% slower on a 3.4Ghz Intel P4 computer.
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Table VI. Geometric Means of Relative Solve Times

Problems Solver Time Ratios

Subset of Probs. Size of Subset Dixon Iter. Refine QSLU rational Wied.

All Problems 276 1.0 0.861 3.247 38.370

D
im

.

100-300 79 1.0 0.859 5.228 12.853
300-1,000 98 1.0 0.835 2.787 24.664

1,000-10,000 84 1.0 0.889 2.654 106.924

10,000+ 15 1.0 0.892 2.219 703.087

S
o
l

b
it

si
ze 0-100 92 1.0 0.993 10.744 36.892

100-1,000 79 1.0 0.911 4.069 57.008
1,000-10,000 55 1.0 0.708 0.971 39.443

10,000+ 50 1.0 0.751 0.949 21.405

N
z.

/
ro

w 2-3 84 1.0 0.966 2.314 61.571
3-5 99 1.0 0.814 2.352 34.924

5-10 68 1.0 0.825 4.982 32.789

10+ 25 1.0 0.811 11.342 17.433

from the rational-reconstruction techniques employed in our implementation. The
purpose of this comparison is simply to demonstrate that our code is reasonably
fast; LinBox is a much larger and more general software package written in C++,
and our software was tuned to be as fast as possible on our specific problem set.

4.2 Rational System Results

Dixon’s method, QSLU rational, and Wiedemann’s method were all able to solve all
instances in our test set to completion. Iterative refinement was able to solve all but
5 of the problems, which failed for numerical reasons. Solve times varied greatly,
ranging from fractions of a second to days. In Table VI we present a comparison
of the solve times over all instances. Computations were performed on linux-based
machines with 2.4GHz AMD Opteron 250 processors and 4 gigabytes of RAM. To
avoid the slower instances outweighing all others, we normalized all solve times by
dividing by the time for Dixon’s method. We then computed the geometric means
over the entire set of instances and also over selected subsets. Using the geometric
mean instead of the arithmetic mean helps to prevent the results from being skewed
by outliers. The five instances where iterative refinement failed are omitted from
the averages in that column. The partitions of the problem set are based on the
dimension of the instances, the bitsize of the final solutions, and the density of the
instances, taken as the average number of nonzeros per row.

An immediate observation is that on the entire problem set, iterative refine-
ment is the fastest method, followed by Dixon’s method, which is nearly as fast.
QSLU rational is more than 3 times slower on average, and Wiedemann’s method is
on average nearly 40 times behind. By considering the various subsets of instances,
we can identify patterns concerning the effect of problem characteristics on the
solve times. One observation is that the dimension of the problem has the most
significant relative effect on the Wiedemann method. The larger instances can have
a minimum polynomial of a higher degree, requiring huge numbers of matrix-vector
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multiplications to perform the finite-field solves.
We note that Dixon and iterative refinement have the best advantage over the

QSLU rational code on the instances with smaller solution bitsize; problems with a
small solution bitsize can be computed with only a few steps of refinement/p-adic
lifting. Relative to Dixon and iterative refinement, QSLU rational becomes slower
as the density increases, presumably because the LU factorization has more fill-
in and computation, which is relatively more expensive using rational arithmetic.
Wiedemann’s method becomes relatively faster as the density increases; this is
likely because increased density gives more work to the LU factorizations used by
the other methods.

In Figure 2 we give a performance profile comparing the four methods on the
full problem set. In this profile we can observe the close performance of Dixon
and iterative refinement, the lag in speed of the QSLU rational method, and the
significantly slower speed of Wiedemann’s method. We note the sharp edge in the
curves for Dixon and iterative refinement, near the top where they cut far to the
right quickly. This is caused by a small group of instances on which QSLU rational
is faster by a significant amount. Some the instances where QSLU rational has a
speed advantage are those having large solution bitsize; unfortunately the bitsize
of a solution is not available before solving to aide in choosing a method.

Fig. 2. Comparison of Rational Solvers
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Another important observation we can make from our experiments is how each
of the methods balances time between their internal subroutines. Table VII pro-
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vides profiling data showing how the time was spent by each method, excluding
QSLU rational. This table was generated by considering the percent breakdown
of the various stages of the algorithm by each method, for each instance, then the
(arithmetic) average was taken over all instances. By residual computation we mean
the time spent within each loop calculating the new right hand side for which the
fixed precision solve will be computed and the radix conversion of the intermediate
solution. Dixon and iterative refinement spent similar portions of their time on the
LU factorizations and rational reconstruction, with a variation of time in their inner
loops. The backsolves were faster for iterative refinement, but the computation of
the residual for lifting was more expensive due to the additional work to compute
the scaling factor α. We note that for Wiedemann’s method, the largest portion of
time was spent doing the first solve and then successive backsolves over finite fields;
the large number of matrix-vector multiplications that must be done in these stages
is relatively much slower than the LU factorization and solves. This table suggests
that if Dixon’s method and iterative refinement are to be made faster computation-
ally, deeper investigation into accelerating rational reconstruction could be helpful,
as it occupied nearly half of the solve time for these methods on average. The large
portion of time spent on rational reconstruction may come as some surprise when
one considers the worst-case complexity analysis of Dixon’s method and iterative
refinement, which do not have rational reconstruction as the dominating factor.
We believe this is explained by the extreme sparsity of our matrices, which allows
for faster than predicted computation in other portions of the algorithm, while not
reducing the required computation for rational reconstruction.

Table VII. Profile of Time Spent

Solve Component Dixon Iter. Refine Wiedemann

Factorization/First Solve 11.9 % 10.1 % 23.7 %
Backsolves 15.5 % 4.5 % 61.3 %

Residual Computation 25.6 % 39.8 % 7.7 %

Rational Reconstruction 47.0 % 45.6 % 7.3 %

Finally, Table VIII provides solve times and detailed information for select in-
stances.

5. CONCLUSION

The results of our computational study provide a picture of how rational solver
methods perform on a test set of very sparse real-world instances arising in linear-
programming applications. By using variations of the QSopt factorization code and
using common rational reconstruction strategies, we give a side by side comparison
of these methods.

There are several conclusions we can make from our computations. The two
methods we found to be the fastest were Dixon’s method and iterative refinement.
These two methods perform repeated fixed-precision solves to obtain high-accuracy
solutions and apply rational reconstruction. Iterative refinement is approximately
15% faster overall, but Dixon’s method has an advantage in numerical stability.
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This agrees with the conclusion of Wan [Wan 2006] that his method is faster than
Dixon’s method on well-conditioned matrices and with the general knowledge that
Dixon’s method should be faster than a direct elimination method using rational
arithmetic. Our conclusions also agree with a computational result in [Dumas and
Villard 2002], who found that Wiedemann’s method could be slower than direct
elimination techniques on structured sparse matrices.

For such a speed difference we find Dixon’s method to be the most attractive
method for our application of exact-precision linear programming. An exact LP
solver can call the exact linear system solver many times, making robustness very
important. In other application areas, iterative refinement might be more attrac-
tive, especially if the systems are known to be numerically stable. We note also
that in some exact LP solution schemes, a double-precision LU factorization of the
basis matrix may be available at the end of a call to the simplex method. In such
cases, the factorization can be used in the steps of the iterative-refinement method,
resulting in a substantial savings in time. In our tests, the QSLU rational code
is faster than the other methods on a small subset of the instances. If multiple
processors are available, a reasonable strategy is to run Dixon’s method on one
processor, and QSLU rational on another.

We found Wiedemann’s method to not be attractive for our LP test instances.
Its black-box nature apparently does not make it competitive in this setting, as the
LU factorizations for these very sparse problems can be computed very quickly. We
believe that the QSLU codes benefited not only from the extreme sparsity of the
matrices but from their structure as well. For other classes of sparse matrices for
which LU factorizations are not possible without significant fill-in, we would expect
Wiedemann’s method to perform more competitively. In such cases dense solvers
might also be competitive, especially on the problems with smaller dimension. In
a study by Eberly et al. [2006] tests were performed on randomly generated sparse
systems and it was found that an efficient dense solver was often able to beat their
sparse solver unless the dimension was very large.

We have tried to use uniform standards as much as possible between our codes in
order to give a fair comparison of the methods we are evaluating. However, there
is always room for improvement in any implementation. We will make some com-
ments on several improvements that could be made and how they could influence
the results of our study. We thank the referees for some excellent suggestions in this
light. The iterative solvers could benefit from better strategies for radix conver-
sion, such as those used by Chen and Storjohann [2005] in their IML software; this
strategy would take advantage of the asymptotically fast multiplication algorithms
in GMP. Other gains for the iterative solves could come from implementing asymp-
totically faster strategies for rational number reconstruction such as the HalfGCD
strategy outlined in [Lichtblau 2005]. For QSLU rational a speedup could possi-
bly be achieved by delaying canonicalization of the rational numbers, which might
reduce the overall time spent on the frequent GCD computations that are made
in association with arithmetic operations. Additional speedup in QSLU rational
might be achieved by applying additional effort in the LU factorization to maintain
sparsity; more aggressive strategies than those currently used might pay off due to
the high cost of rational arithmetic. If all of these suggestions were implemented



20 · W. Cook and D. Steffy

it would not effect the relative performance of the iterative solvers. We also con-
jecture that the iterative solvers could be improved more than the direct rational
solver, which would not change our conclusions.

The methods we have used for rational reconstruction in this paper are also ap-
plicable to solving dense systems of equations using iterative refinement or Dixon’s
method. For dense systems of equations, both Wiedemann’s method and direct
rational solvers are not expected to perform competitively.
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