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ABSTRACT
We describe an iterative refinement procedure for comput-
ing extended precision or exact solutions to linear program-
ming problems (LPs). Arbitrarily precise solutions can be
computed by solving a sequence of closely related LPs with
limited precision arithmetic. The LPs solved share the same
constraint matrix as the original problem instance and are
transformed only by modification of the objective function,
right-hand side, and variable bounds. Exact computation
is used to compute and store the exact representation of
the transformed problems, while numeric computation is
used for solving LPs. At all steps of the algorithm the LP
bases encountered in the transformed problems correspond
directly to LP bases in the original problem description.

We demonstrate that this algorithm is effective in prac-
tice for computing extended precision solutions and that this
leads to direct improvement of the best known methods for
solving LPs exactly over the rational numbers.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance mea-
sures; G.4 [Mathematics of Computing]: Algorithm de-
sign and analysis; I.1.2 [Computing Methodologies]: Sym-
bolic and algebraic manipulation—Performance evaluation
of algorithms and systems

General Terms
Algorithms, Performance, Optimization

Keywords
Linear programming, iterative refinement

1. INTRODUCTION
Most computer codes available today for solving linear

programs (LPs) use floating-point arithmetic, which can lead
to numerical errors. Although such codes are effective at
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computing approximate solutions for a wide range of in-
stances, there are situations when their results are unreli-
able, or when extended precision or exact solutions are de-
sirable. Fast algorithms for exact linear programming are
also directly useful as subroutines for solving mixed-integer
programming problems exactly [1, 7].

Some recent articles that have used the exact solution of
linear or integer programming instances to establish theo-
retical results include [3, 4, 5, 9, 14, 15, 16]. Computational
tools for exact linear and integer programming have not been
readily available until recently. Improving their speed and
capabilities will expand the range of problems and instance
sizes where they can be successfully applied.

The purpose of this article is to develop and study a tech-
nique to build extended precision LP solutions using an ap-
proximate LP solver as a subroutine. As a byproduct, this
algorithm can also be used to solve LPs exactly over the
rational numbers faster than previous methods.

2. BACKGROUND

2.1 Linear programming from a simplex per-
spective

Linear programming has become one of the most essen-
tial tools in theory and practice of mathematical optimiza-
tion due to strong duality theory and the availability of fast
solution algorithms. In this section, we summarize some
well-known facts and sketch the idea of the simplex algo-
rithm, one of the most commonly used solution methods.
More details can be found in many textbooks such as [6].
For readers familiar with the simplex algorithm, this will
only serve as an introduction to our notation.

A linear program consists of a linear objective function,
linear constraints, and bounds on the variables. It can be
written in the form

min{cTx : Ax = b, ` 6 x 6 u}

with objective function vector c ∈ Rn, bounds ` ∈ (R ∪
{−∞})n and u ∈ (R ∪ {+∞})n, constraint matrix A ∈
Rm×n, and right-hand side b ∈ Rm. This form is often
called computational form, since it is used by most imple-
mentations of the simplex algorithm. Inequality constraints
L 6 aTx 6 U can be converted to computational form
by introducing an auxiliary slack variable, aTx − s = 0,
L 6 s 6 U . W.l.o.g. we may assume that A has full rank
and n > m.

For the sake of clarity, our presentation will assume zero



lower bounds and infinite upper bounds for all variables,

min{cTx : Ax = b, x > 0}, (1)

however, the methods proposed are easily implemented for
general LPs.

The feasible region F = {x ∈ Rn : Ax = b, x > 0} of
(1) is a polyhedron. Problem (1) is called infeasible if F
is empty, unbounded if it contains solutions with arbitrarily
low objective value cTx, but unless stated otherwise, we will
assume that an optimal solution exists, i.e., an x∗ ∈ F with
cTx∗ 6 cTx for all x ∈ F . Importantly, if an optimal solution
exists then there also exists an optimal vertex of F .

The vertices of F are a special case of basic solutions.
Basic solutions are solutions uniquely determined by n−m
variables held fixed at their bounds. The so-called basis
B ⊆ {1, . . . , n}, |B| = m, is formed by the indices of the re-
maining, unfixed variables. This transforms the constraints
Ax = b to

ABxB = b, (2)

where AB ∈ Rm×m denotes the submatrix of A formed by
the columns in B and xB denotes the vector of basic variables
xi, i ∈ B. In the following, we consider only bases with
regular AB. Then (2) uniquely defines a primal solution
xB = A−1

B b, xi = 0 for i 6∈ B. Furthermore, the system

AB
Ty = cB (3)

provides us with a unique dual solution y ∈ Rm. This way,
each variable is associated with its reduced cost ci − AT

i y,
i ∈ {1, . . . , n}, where Ai denotes the i-th column of A.
Note that basic solutions satisfy the complementary slack-
ness conditions xi = 0 ∨AT

i y = ci for all i ∈ {1, . . . , n}.
For a basis B, let x∗, y∗ be the corresponding primal-dual

solution. By definition, x∗ satisfies the equality constraints,
but may violate the nonnegativity constraints. We call B
primal feasible if xB > 0 and dual feasible if the reduced
costs are nonnegative, i.e., ci − AT

i y > 0 for all i 6∈ B. The
vertices of F are precisely the primal feasible basic solutions.
Dual feasibility certifies the optimality of x∗ since

cTx > (ATy∗)Tx
(1)
= y∗

T
b

(2)
= y∗

T
ABx

∗
B

(3)
= cB

Tx∗B = cTx∗

for all x ∈ F . Hence, a primal and dual feasible basis is
called optimal.

Note that basic solutions are discrete objects, and (1)
could in theory be solved by enumerating its finitely many
bases. More sophisticatedly, the primal simplex algorithm
constructs a sequence of neighboring primal feasible bases,
i.e., neighboring vertices of F , with increasing objective value
until the reduced costs are all nonnegative, i.e., dual feasi-
bility proves optimality.

At a primal feasible basis B, the basic variables are a func-
tion of the nonbasic variables as can be seen by rewriting (2)
in more detail as

xB = A−1
B (b−

∑
i6∈B

Aixi) = A−1
B b−

∑
i 6∈B

(A−1
B Ai)xi. (4)

The neighboring bases of B are reached by increasing the
value of a single nonbasic variable xk , k 6∈ B, from 0 up to
the maximum value such that xB = A−1

B b− (A−1
B Ak)xk > 0

still holds. One basic variable, x`, ` ∈ B, becomes tight at its
bound and we have reached a new basis B′ = (B\{`})∪{k},
which can be proven to be regular.

The reduced cost of the increased nonbasic variable xk
determines the change of the objective function value,

cTx = cT
BxB + ckxk

(4)
= cT

BA
−1
B b− cT

B(A−1
B Ak)xk + ckxk

(3)
= cT

BA
−1
B b+ (ck −AT

ky)xk.

Hence, by inspecting the reduced costs, the simplex algo-
rithm can either conclude optimality or keep choosing a
nonbasic variable with negative reduced cost to decrease the
objective function value. Zero step length, i.e., when xk en-
ters the basis but its value remains at zero, may occur at
so-called degenerate bases, but special techniques have been
developed to nevertheless guarantee a convergent algorithm.

The dual simplex algorithm works analogously, only that
it maintains a dual feasible basis and keeps choosing nega-
tive basic variables to leave the basis until xB > 0 is satisfied.
Both variants must be preceded by a phase one algorithm to
construct a primal respectively dual feasible starting basis.
One technique employed, e.g., by the LP solver SoPlex [25,
29] used in our computational experiments, is to either mod-
ify the variable bounds or the objective function in order to
artificially guarantee primal or dual feasibility, respectively,
of a regular basis formed by slack variables. Then, primal
or dual simplex is applied and yields an optimal solution
which preserves its dual or primal feasibility, respectively,
even after returning to the original problem.

Most of the computational effort is incurred by linear al-
gebra routines involving the basis matrix AB to solve (2)
and (3), or to compute the step direction. State-of-the-art
solvers heavily exploit sparsity of the input data and employ
an LU factorization of AB which is not recomputed at each
iteration, but can be updated cheaply.

The most relevant alternatives to the simplex method in
practice are interior point algorithms, for which polynomial
running time can be proven. In contrast, the theoretical
running time of the known simplex variants is exponential.
Nevertheless, state-of-the-art implementations of the dual
simplex algorithm are competitive with interior point codes
for solving LPs from scratch and have the advantage of al-
lowing for fast reoptimization after small modifications to
the problem by warm starting from the preceding basis.

2.2 Exact methods for linear programming
A trivial method to solve LPs exactly over the rational

numbers might be to apply a simplex algorithm and perform
all computations in exact arithmetic. For all but few LP
instances of interest, this idea is not viable. In the following,
we will briefly present recent research on efficiently solving
LPs exactly over the rational numbers.

These methods exploit the basis information provided by
the simplex algorithm. If an optimal basis is identified, then
an optimal primal-dual solution can be computed exactly
using equations (2) and (3). Note that, when computed
exactly, the primal-dual solution is a certificate of its own
optimality, regardless of how its basis was obtained.

It has been observed that LP bases returned by floating-
point solvers are often optimal for real world problems [10].
Koch [17] could compute optimal bases to all of the NETLIB
LP instances [21] using only floating-point LP solvers and
subsequently certifying them in exact rational arithmetic.

Applegate, Cook, Dash, and Espinoza [2] developed a
simplex-based general purpose exact LP solver, QSopt ex,
that exploits this behavior to achieve fast computation times



on average and is capable of solving general LPs exactly over
the rational numbers. If an optimal basis is not identified
by the double-precision subroutines, more simplex pivots are
performed using increased levels of precision until the exact
rational solution is identified. A simplified version of this
procedure is summarized as Algorithm 1. Whenever possi-
ble, the LP solve in line 4 is warm started with a basis B
computed at a previous iteration. Analogous ideas are used
for infeasible and unbounded LPs, see [11].

Algorithm 1 Incremental precision boosting for exact LP

1: input: min{cTx : Ax = b, x > 0} in rational precision
2: for precision = double, 128, 256, . . . , rational do
3: get Ā, b̄, c̄ ≈ A, b, c in current precision
4: solve min{c̄Tx : Āx = b̄, x > 0} in current precision
5: get basis B returned as optimal
6: compute exact rational primal-dual solution for B
7: if exact primal-dual solution is optimal then
8: break
9: end if

10: end for
11: return: rational primal-dual solution, basis B

QSopt ex is often very effective at finding exact solutions
quickly, especially when the double-precision LP subroutines
are able to find an optimal LP basis. However, in cases
that extended precision computations are used to identify
the optimal basis, or when the rational systems of equations
solved to compute the rational solution are difficult, solution
times can increase significantly. We will refer to this strategy
of iteratively increasing the working precision for the simplex
algorithm as incremental precision boosting.

We also refer the reader to [30] for a general discussion
on Exact and Robust Computational Geometry; although it
does not discuss exact linear programming directly, many of
the ideas are of direct relevance.

2.3 Iterative refinement for linear systems of
equations

Iterative refinement is a commonly applied technique for
finding accurate solutions to linear systems of equations and
can be summarized as follows: Given a system of linear
equations Ax = b, a sequence of increasingly accurate so-
lutions {x0, x1, . . .} is constructed by first computing an ap-
proximate solution x0, with Ax0 ≈ b. Then for i > 1, a
refined solution xi←xi−1 + ci−1 is computed where ci−1

satisfies Aci−1 ≈ ri−1 and is a correction of the error ri−1 =
b− Axi−1 observed from the solution at the previous itera-
tion. This procedure can either be applied in fixed precision,
where all operations are performed using the same level of
precision, or in mixed precision where the residual errors ri

are computed with a higher level of precision than the sys-
tem solves to compute the corrections ci. For more details,
see [13, 28].

Iterative refinement can also be used as a subroutine for
computing exact solutions to rational systems of linear equa-
tions. After a sufficiently accurate solution xi has been con-
structed, the continued fraction method can be used to re-
construct the exact solution; this strategy is guaranteed to
work as long as xi satisfies an accuracy threshold that can be
determined a priori. This idea was described by Ursic and
Patarra [26] and improved upon by Wan [27]. For additional

recent developments see [23, 24].
There are a number of ways in which the idea of itera-

tive refinement could be applied to solving linear programs.
In [8], iterative refinement was investigated alongside other
strategies for computing the exact rational solutions in line 6
of Algorithm 1; in many cases, this was faster than the other
strategies tested. We also note that QSopt ex does try to
round the approximate primal-dual solution it has computed
in line 4 to the exact rational solution using a continued frac-
tion approximation before applying other methods to com-
pute the exact basic solution from scratch in line 6.

One possible adjustment to Algorithm 1 would be to ap-
ply iterative refinement internally at several components of
the simplex algorithm, as an alternative to increasing the
working precision. Although such a strategy could yield an
improvement we will take it one step further and instead
solve a sequence of LPs, each one computing a correction
of the previous, to build and refine an accurate primal-dual
solution and corresponding basis. This strategy will simul-
taneously refine both the primal and dual solutions, by ad-
justing the primal feasible region and objective function of
the LP to be solved.

3. ITERATIVE REFINEMENT LINEAR PRO-
GRAMMING

3.1 The main idea
We now introduce our iterative refinement algorithm for

linear programming. The main idea of the algorithm is as
follows. First, the LP is solved approximately, producing
a primal-dual solution x∗, y∗. Then, based on the error in
x∗, y∗, a modified problem is created by shifting and scaling
the primal and dual feasible regions of the original instance;
a solution to this newly constructed problem gives a cor-
rection that is used to refine the accuracy of x∗, y∗. This
process is iterated – repeatedly correcting the candidate so-
lution – until it meets a required accuracy. The procedure
is outlined in Algorithm 2. All operations are performed in
exact rational arithmetic unless otherwise noted.

Before explaining Algorithm 2 in more detail, let us prove
its correctness by showing that solving the transformed prob-
lem is equivalent to solving the original problem. As we will
now see this holds for arbitrary vectors x̂, ŷ.

Proposition 3.1. Let P = min{cTx : Ax = b, x > 0} as
in (1), let x̂ ∈ Rn, ŷ ∈ Rm and scaling factors ∆P , ∆D > 0
be given. Consider the transformed problem

P̂ = min{ĉTx : Ax = b̂, x > −∆P x̂}

with ĉ = ∆D(c − ATŷ) and b̂ = ∆P (b − Ax̂). Let x∗ ∈ Rn,
y∗ ∈ Rm, then the following hold:

1. x∗ is primal feasible for P̂ within absolute tolerance
εP > 0 if and only if x̂ + x∗

∆P
is primal feasible for P

within εP /∆P .

2. y∗ is dual feasible for P̂ within absolute tolerance

εD > 0 if and only if ŷ + y∗

∆D
is dual feasible for P

within εD/∆D.

3. x∗, y∗ satisfy the complementary slackness conditions

for P̂ if and only if x̂+ x∗

∆P
, ŷ+ y∗

∆D
are complementary

slack for P .



Algorithm 2 Iterative ref. for primal and dual feasible LP

1: input: min{cTx : Ax = b, x > 0} in rational precision,
termination tolerances εP , εD, scaling limit α, iteration
limit kmax

2: /* initial solve */

3: ∆P ← 1, ∆D← 1
4: solve min{cTx : Ax = b, x > 0} approximately
5: B ← basis returned as optimal
6: x1, y1 ←primal-dual solution returned
7: for k← 1, 2, . . . , kmax do
8: /* primal violation and scaling */

9: b̂← b−Axk
10: δP ← max{maxj=1,...,m

∣∣b̂j∣∣,maxi=1,...,n−xki }
11: ∆P ← min{1/δP , α∆P }
12: /* dual violation and scaling */

13: ĉ← c−ATyk

14: δD← max{maxi∈B
∣∣ĉi∣∣,maxi 6∈B −ĉi}

15: ∆D← min{1/δD, α∆D}
16: if δP 6 εP and δD 6 εD then
17: break
18: else
19: /* solve transformed problem */

20: solve min{∆D ĉ
Tx : Ax = ∆P b̂, x > −∆Px

k}
approximately from starting basis B

21: B ← basis returned as optimal
22: x∗, y∗ ←primal-dual solution returned
23: /* perform correction */

24: xk+1←xk + x∗

∆P

25: yk+1← yk + y∗

∆D

26: /* force nonbasic variables to bounds */

27: xk+1
i ← 0 for all i 6∈ B

28: end if
29: end for
30: return: xk, yk, basis B

4. x∗, y∗ is an optimal primal-dual solution for P̂ if and

only if x̂+ x∗

∆P
, ŷ + y∗

∆D
is optimal for P .

5. x∗, y∗ is a basic primal-dual solution of P̂ associated

with basis B if and only if x̂+ x∗

∆P
, ŷ + y∗

∆D
is a basic

primal-dual solution for P associated with basis B.

Proof. For primal feasibility, point 1, we must check that
the violation of variable bounds and equality constraints is
simply scaled by 1/∆P ,(

x̂+
x∗

∆P

)
− 0 =

x∗ − (−∆P x̂)

∆P

and

A
(
x̂+

x∗

∆P

)
− b =

∆PAx̂+Ax∗ −∆P b

∆P
=
Ax∗ − b̂

∆P
.

For dual feasibility, point 2, we check the reduced costs,

c−AT(ŷ +
y∗

∆D

)
=

∆Dc−∆DA
Tŷ −ATy∗

∆D
=
ĉ−ATy∗

∆D
.

This also shows that corresponding variable bounds and re-
duced costs are tight in P if and only if they are in P̂ , proving
the claim on complementary slackness, point 3.

Since a solution is optimal if and only if it is primal and
dual feasible and complementary slack, the first three points

prove point 4. Finally, for a regular basis B we have

x∗i = −∆P x̂i ⇔ x̂i +
x∗i
∆P

= 0 for all i 6∈ B,

ABx
∗
B = b̂⇔ AB

(
x̂+

x∗

∆P

)
= b,

AB
Ty∗ = ĉ⇔ AB

T(ŷ +
y∗

∆D

)
= c,

which shows the one-to-one correspondence of basic solu-
tions, point 5.

To our knowledge, no previous articles have described such
an iterative refinement algorithm for linear programming.
Nevertheless, we believe that some aspects of our approach
might have been used in software packages, although most
likely not with extended precision or rational arithmetic. We
are at least aware that some interior point solvers have ex-
perimented with the idea of replacing the objective function
of an LP by its reduced cost vector and resolving the prob-
lem to improve some of its numerical properties – this would
correspond to performing a single dual refinement step.

3.2 Algorithmic details
Now, a few explanatory comments to clarify Algorithm 2.

Recall that only the LP solver uses floating-point compu-
tation, while the other operations are performed in exact
rational arithmetic. The values ∆P , ∆D are the, possibly
distinct, primal and dual scaling factors; they are used to
amplify the error in the right-hand side and variable bounds,
and the reduced costs, respectively. They are computed
such that the maximum absolute value in the transformed
right-hand side, variable bounds, and objective function be-
comes 1. Because of the limited precision of the corrections
returned by the floating-point solver, we additionally limit
the increase of the scaling factors at each iteration by some
factor α. In our implementation, we chose α = 1012, so
that 1/α is slightly below the numerical tolerance of the LP
solver, 10−9.

As stated, Algorithm 2 assumes that the underlying LP
solver returns a basic solution in lines 5 and 21. First, this is
used to compute the violation of the reduced costs in line 14.
If basic information is not available, the test i ∈ B can be
replaced by checking whether variable xi is – up to some tol-
erance – tight at its bound. Second, from point 5 of Proposi-
tion 3.1 we know that the corrected solution corresponds to
the basis returned for the transformed problem. However,
since the floating-point LP solver operates on the approxi-
mate problem, the nonbasic variables xk+1

i , i 6∈ B, may not
be at their bound exactly. This is enforced in line 27 to
ensure that B remains a valid starting basis for the trans-
formed problem in the next iteration. If the LP solver does
not work with basic solutions, this step can be left out.

Third, since the LPs solved at each iteration are very sim-
ilar, an algorithm capable of warm starting, such as the sim-
plex method, has a clear advantage. Nevertheless, there may
be circumstances where other LP algorithms like interior
point methods are desirable and, as explained above, can be
applied. If carefully implemented, the iterative refinement
algorithm can access the underlying LP solver through an
interface and exchange the LP solver whenever beneficial.

Exact computations are used to compute the modified ob-
jective function, right-hand side, and variable bounds. The
costs of these computations could be reduced by updating



these values from iteration to iteration and by rounding the
corrector solution x∗, y∗ to have a simple rational represen-
tation, similar to the ideas used by Wan [27] for linear system
solving. Computing the corrected solution in lines 24 and
25 can be sped up by choosing the scaling factors ∆P , ∆D

to have a special form, i.e., powers of 2.
Points 1 and 2 of Proposition 3.1 tell us that, assuming

we can consistently compute LP solutions that are accurate
within an absolute tolerance level of ε, then we converge
to an arbitrarily precise primal-dual solution. If the viola-
tions δP and δD computed in lines 10 and 14 are always
below 1/(α∆P ) and 1/(α∆D), respectively, for α > 1, and
therefore we increase ∆P and ∆D by a factor of α at each
iteration, then we obtain a primal-dual solution accurate to
an absolute tolerance of 1/αk after k iterations.

An exact rational solution can be computed in one of two
ways: first, the exact solution for basis B can be recomputed
exactly, as in Algorithm 1; alternatively, rational reconstruc-
tion can be applied directly to the refined solution xk, yk.

Although there is no guarantee that a floating-point solver
will produce correct solutions that are accurate to within a
fixed tolerance level, this is often the case in practice. How-
ever, in some cases LPs may be so poorly conditioned that
the floating-point LP solver produces meaningless results.
In such a case performing extended precision computations
within the solver may be necessary. A minor modification
could be done to Algorithm 2 to incrementally boost the
working precision used for all non-exact computations per-
formed within the for loop when needed, as in Algorithm 1.

3.3 Infeasibility and unboundedness
So far we have described how to compute extended pre-

cision solutions for LPs which are indeed primal and dual
feasible. Otherwise, our task is to construct an extended
precision certificate of the LP’s infeasibility or unbounded-
ness.

An LP of form (1) is infeasible if and only if there exists
y ∈ Rm with ATy 6 0 and bTy > 0, a so-called Farkas proof.
Such a certificate can be detected algorithmically already
while trying to solve the LP. More analytically, it is given
as dual solution to the slightly modified LP

min{−τ : Ax− bτ = 0, x, τ > 0}, (5)

which is trivially feasible. If (and only if) (1) is infeasible
then (5) has a finite optimum and we can directly apply
Algorithm 2 to compute a certificate of high precision.

A certificate of primal unboundedness consists of a primal
feasible point and an unbounded ray x ∈ Rn with Ax = 0,
x > 0, and cTx < 0. For the former, we may simply apply
Algorithm 2 to LP (1) with zero objective function. For the
latter, we can compute an extended precision solution to the
auxiliary LP

min{0 : Ax = 0, cTx = −1, x > 0}, (6)

which is primal and dual feasible if and only if (1) is dual
infeasible, a consequence of (1) being unbounded.

Now, typically the status of an LP is not known a priori
and one starts by trying to solve the original problem. If
this is detected as infeasible or unbounded, we can turn to
the auxiliary LPs (5) or (6), respectively. However, since
floating-point LP solvers relax primal and dual feasibility
by numerical tolerances, they may return with a solution
claimed optimal, although the LP is infeasible or unbounded.

The following shows that nevertheless we may continue by
constructing and solving our transformed problem, since cer-
tificates of infeasibility or unboundedness remain valid under
the transformation.

Proposition 3.2. Let conditions be given as in Proposi-
tion 3.1, then the following hold:

1. P is primal unbounded if and only if P̂ is, and x∗ is an
unbounded ray for P if and only if it is an unbounded
ray for P̂ .

2. P is primal infeasible if and only if P̂ is, and y∗ is a
Farkas proof for P if and only if it is a Farkas proof
for P̂ .

Proof. A primal ray x∗ > 0, Ax∗ = 0, is unbounded for
P̂ if and only if

∆P (c−ATŷ)Tx∗ < 0⇔ cTx∗ − ŷTAx∗ < 0⇔ cTx∗ < 0,

i.e., if it is unbounded for P .
Concerning infeasiblity, note that the Farkas proof for an

LP with nonzero lower bounds on the variables, x > `, is
a dual ray y with ATy 6 0 and (b − A`)Ty > 0. Then y∗,

ATy∗ 6 0, is a valid Farkas proof for P̂ if and only if(
b̂−A(−∆px̂)︸ ︷︷ ︸
∆P (b−Ax̂+Ax̂)

)T
y∗ > 0⇔ bTy∗ > 0,

i.e., if it is a valid Farkas proof for P .

4. COMPUTATIONAL STUDY
In this section we describe an implementation of Algo-

rithm 2 and evaluate its effectiveness in practice. Experi-
ments were run on a computer with 48 GB RAM and two In-
tel(R) Xeon(R) X5672 CPUs, each with four 3.2 GHz cores.

4.1 Test environment and test set
We have implemented Algorithm 2 within the SoPlex LP

solver, Version 1.6 [25, 29]. SoPlex is an academically de-
veloped simplex-based LP solver that is maintained at the
Zuse Institute Berlin and is freely available for academic
use, including the source code. The rational computations
are performed using the GMP arithmetic library [12], Ver-
sion 4.3.1. By default we are using tolerances εP = εD = 0,
scaling limit α = 1012, and kmax = 5, meaning we perform
at most five refinement iterations.

When the transformed problem is solved, on line 20, in ad-
dition to warm starting from the previous basis B, we also
reuse and keep updating the LU factorization of the basis
matrix AB. This avoids performing a full refactorization of
the basis matrix, which SoPlex by default performs only
every 200 simplex iterations. LP preprocessing and scal-
ing are not applied. Our current implementation does not
include the extensions for infeasible and unbounded LPs.

Henceforth we will use SoPlex+ to denote SoPlex with
iterative refinement as described above and SoPlex0 to
specify the standard version of SoPlex without iterative
refinement, i.e., using kmax = 0.

We now describe our testing framework. In order to ob-
serve the effectiveness of Algorithm 2 for computing ex-
tended precision solutions we apply SoPlex0 and SoPlex+

and compare the solution times and solution accuracy. To
evaluate the quality of the LP bases identified, we perform



two checks: first, we compute the corresponding primal-dual
solution exactly to see if the basis is optimal; second, we
use each basis to warm start QSopt ex and measure the
solution time. This second measurement allows us to ob-
serve how helpful iterative refinement can be when embed-
ded within an exact LP solver. Although some information
is lost by doing this (in particular, the extended precision
solution xk, yk constructed in Algorithm 2), it allows for a
direct comparison with previous methods.

For calling SoPlex0, SoPlex+, and QSopt ex and for
passing the basis from SoPlex to QSopt ex we use the
exact MIP solving framework described in [7]. All test in-
stances were converted exactly into the form min{cTx : Ax =
b, ` 6 x 6 u} by explicitly adding slack variables as de-
scribed in Section 2.1.

To obtain a meaningful picture of the performance of this
algorithm we will present results on two test sets. First,
we show the performance on the NETLIB library [21], a
standard collection of LP instances, which are known to not
be especially numerically difficult. Although most of these
LPs were found to be ill-posed in [22], we still consider them
to be numerically easy from a practical point of view because
floating-point LP solvers often find optimal bases.

For our second test set we collected a pool of numerically
troublesome instances with finite optimum. A total of over
900 instances from the NETLIB LP test set [21], Mittel-
mann’s LP test set [20], Mészáros’s LP test set (new, mis-
cellaneous, problematic and stochastic test sets) [19], and LP
relaxations of all instances in the MIPLIB 2010 test library
[18] were taken as a starting point. From this collection we
selected the instances for which SoPlex0 did not identify
an optimal basis. We eliminated some instances with exces-
sive running times (over 24 hours) and one instance, iprob,
that was too poorly conditioned for the double-precision LP
solver to handle. Finally, after removing some instances of
the overrepresented classes delf0**, large0**, small0**,
we were left with 74 instances.

At last, we need to comment on the tolerances used by
floating-point LP solvers to measure primal and dual fea-
sibility. Generally, using a stricter tolerance will more fre-
quently find an optimal LP basis, while too strict of a tol-
erance can lead to a numerical breakdown. By default,
SoPlex uses an absolute feasibility tolerance of 10−6. In
our experiments, we have tightened it to 10−9, which we ob-
served to find more optimal bases than the default. Further
tightening this tolerance to 10−12 enabled SoPlex0 to iden-
tify optimal bases for some additional instances but yielded
numerical troubles and incorrect claims of infeasibility or
unboundedness on others. We note that the analogous tol-
erance in the commercial LP solver CPLEX is adjustable
by the user to no smaller than 10−9.

4.2 Computational results
We first present results on the NETLIB LP instances. Ta-

ble 1 lists aggregate information for SoPlex0 and SoPlex+:
the number of LP iterations used “LP Iters”, the LP solution
time“LP Time [sec]”(including iterative refinement, if used),
the time required by QSopt ex to solve the LP exactly af-
ter being warm started from the final LP basis of SoPlex0

or SoPlex+ “EXLP Time [sec]”, and finally the number of
instances where an optimal basis was found. Average times
and LP iterations are reported as geometric means because
solution times and LP iterations vary widely among the in-

Table 1: Results on NETLIB LP test set.

SoPlex0 SoPlex+

LP Iters 773 775
LP Time [sec] 0.21 0.34
EXLP Time [sec] 0.21 0.19
Optimal basis found 89/92 92/92

stances. Times were rounded up to 0.1 second if smaller.
The main observations we make from Table 1 are that per-

forming some iterative refinement on instances that do not
have numerical problems does not introduce a significant
overhead, neither in solution time nor in the number of sim-
plex pivots. Once an optimal basis is found, the iterative
refinement rounds simply refine the accuracy of the basic
solution without performing additional pivots. Note that
SoPlex+ found all optimal bases whereas SoPlex0 fails on
dfl001, etamacro, and pilot87, which are also included in
our troublesome test set. When Koch [17] identified all op-
timal NETLIB bases with SoPlex, 128-bit arithmetic was
used on some instances.

Table 2 presents computational results on the numerically
troublesome instances, comparing SoPlex0 with SoPlex+.
For these two methods we list the total number of simplex
pivots used “LP Iters”, the LP solution time “LP Time [sec]”
(including iterative refinement, if used), and the time re-
quired by QSopt ex to solve the LP exactly when warm
started from the final basis returned by SoPlex0 or SoPlex+

“EXLP Time [sec]”. For both solvers we also list the maxi-
mum error “Violation” of the solution returned (violation of
constraints, bounds, or reduced costs), computed exactly.

Note that although we always perform five rounds of iter-
ative refinement, SoPlex+ might already arrive at the final
basis in an earlier round. The remaining rounds then only
refine the numerical solution at this basis without further
simplex pivots. Column “Rnds to Bas” reports the round in
which SoPlex+ identified the basis that it returned. The
final row states geometric mean values; here, times were
rounded up to 0.1 second if smaller.

From Table 2 we see that SoPlex+ successfully computed
high precision solutions without experiencing a large over-
head in time or number of LP iterations when compared to
SoPlex0. Better yet, SoPlex+ returned an optimal basis
for every instance; in all but three cases this basis was found
within the first or second round of refinement.

Finally, to evaluate the improvement that iterative refine-
ment provides to exact LP solving, we consider the time
used by SoPlex plus the time of QSopt ex after warm
starting for both SoPlex0 and SoPlex+. Considering the
arithmetic mean of these ratios, iterative refinement is 9.76
times faster, with ratios on individual instances as high as
239 (mod2). (Alternatively, computed as a ratio of the geo-
metric means in the last column of Table 2, the speedup fac-
tor is 5.45.) Apart from the tiny instance gams30a, the only
instance with a slowdown is fome13, which is explained by
an anomalous situation in QSopt ex: although SoPlex+

computed an optimal basis, due to numerical errors the first
double-precision solve (on line 4 of Algorithm 1) failed to rec-
ognize the dual feasibility of the basis and then proceeded to
solve the instance from scratch, resulting in the long running
time.



Table 2: Results on troublesome test instances.

SoPlex0 (SoPlex without iterative refinement) SoPlex+ (SoPlex with iterative refinement)

Name LP Iters LP Time [sec] EXLP Time [sec] Violation LP Iters LP Time [sec] EXLP Time [sec] Violation Rnds to Bas

atm20-100 4243 0.29 12.15 2.00373e-11 4364 1.16 0.17 1.85688e-73 1
delf000 2300 0.26 3.39 5.02016e-13 2432 0.54 0.56 8.39421e-90 1
delf001 2409 0.27 4.16 4.78653e-13 2545 0.66 0.48 4.83543e-89 1
delf002 2491 0.40 4.20 6.17014e-13 2624 0.71 0.63 2.64309e-87 1
delf003 2894 0.43 4.06 9.57791e-13 3031 0.79 0.98 1.16510e-88 1
delf004 2969 0.34 4.55 8.77790e-13 3111 0.75 1.18 6.13890e-88 1
delf005 3481 0.42 4.94 1.76242e-12 3618 0.88 1.22 5.46639e-87 1
delf006 3191 0.41 7.61 2.44232e-12 3328 0.77 1.82 1.91097e-88 1
delf007 3198 0.46 7.00 1.20085e-12 3376 0.80 1.25 3.82540e-87 1
delf008 3247 0.49 7.20 2.58426e-12 3417 0.85 1.40 3.21860e-82 2
delf009 3531 0.56 8.96 1.66767e-12 3701 1.02 1.96 9.97465e-88 1
delf010 3182 0.53 7.52 2.61187e-12 3354 0.95 1.31 6.57537e-83 2
delf011 3151 0.36 6.99 1.80400e-12 3321 0.84 0.69 9.56086e-88 1
delf012 3627 0.51 6.10 1.66206e-12 3796 0.92 0.99 9.65252e-88 1
delf013 3452 0.44 6.20 1.15851e-11 3625 0.87 1.10 1.96875e-88 1
delf014 3164 0.36 7.25 2.04394e-12 3305 0.78 0.84 7.13000e-89 1
delf015 3666 0.52 7.38 2.84292e-12 3807 0.94 1.01 1.43751e-88 1
delf017 3265 0.38 6.30 7.29140e-13 3406 0.86 0.86 2.85603e-88 1
delf018 3369 0.40 5.87 7.28550e-13 3512 0.92 0.54 1.30510e-87 1
delf019 3165 0.39 4.78 6.49831e-13 3308 0.72 0.40 1.39656e-88 1
delf020 3302 0.47 7.04 3.09865e-12 3492 0.85 0.53 3.55083e-81 2
dfl001 23175 15.31 4127.79 4.33902e-10 23177 16.27 1.04 2.59988e-68 1
etamacro 936 0.08 0.40 9.99997e-10 937 0.21 0.04 3.63132e-76 1
fome11 42323 44.57 1884.00 2.83435e-10 42328 47.34 1.91 1.27600e-68 1
fome12 92070 149.89 7192.94 7.41202e-10 92267 155.80 3.55 2.76417e-63 1
fome13 183383 452.70 9135.32 9.07219e-10 184744 471.67 10297.09 3.41988e-60 1
gams30a 487 0.02 0.08 1.00000e-09 500 0.10 0.02 1.70479e-87 1
gen1 3628 8.25 1406.45 8.43854e-10 3978 10.23 311.25 1.67594e-66 1
gen 3628 8.32 1417.51 8.43854e-10 3978 10.25 311.45 1.67594e-66 1
large000 3828 0.33 9.09 6.20093e-13 4007 0.84 0.68 2.28257e-90 1
large001 6468 1.05 6.91 4.03544e-12 6647 1.66 1.00 6.66322e-81 1
large002 4627 0.60 13.11 5.60934e-12 4952 1.26 1.96 1.07875e-84 2
large003 4928 0.69 10.31 1.58380e-12 5102 1.28 1.24 9.47192e-89 1
large004 5134 0.78 11.14 3.01933e-11 5313 1.37 2.14 2.23100e-87 1
large005 4931 0.60 10.12 8.00677e-13 5104 1.15 1.08 1.23062e-88 1
large006 4840 0.59 11.12 6.85503e-13 5059 1.15 1.43 2.03351e-86 1
large007 5056 0.67 9.50 1.32355e-12 5277 1.26 1.36 2.53356e-87 1
large008 5224 0.76 10.15 9.29166e-13 5445 1.33 1.48 1.61060e-86 1
large009 5278 0.75 11.55 1.20416e-12 5498 1.34 1.59 5.94184e-88 1
large010 4709 0.59 11.12 4.01766e-11 4929 1.20 1.48 1.33615e-80 2
large011 5176 0.71 11.50 8.87912e-13 5396 1.29 1.71 8.51599e-88 1
large012 4763 0.60 11.26 6.93811e-12 4983 1.21 1.40 7.10682e-86 1
large013 5254 0.75 10.40 1.47538e-12 5475 1.33 1.14 1.52980e-87 1
large014 5091 0.66 10.32 6.81819e-13 5314 1.23 1.16 9.11155e-88 1
large015 5111 0.63 10.26 1.39860e-12 5345 1.22 1.22 7.14458e-86 1
large016 4878 0.56 10.74 2.20265e-12 5113 1.15 1.18 3.45056e-87 1
large017 4705 0.50 9.63 5.18197e-12 4884 1.07 1.06 3.74349e-88 1
large018 4930 0.56 9.83 4.85757e-12 5109 1.14 0.75 1.93616e-88 1
large019 4833 0.50 9.47 5.88247e-13 5012 1.05 0.65 6.66263e-90 1
large020 5263 0.92 14.05 9.76857e-13 5501 1.24 0.79 9.86219e-88 1
mod2 69220 152.20 13428.22 3.47427e-10 69330 159.34 6.05 1.43436e-46 3
momentum3 79570 305.97 15935.44 8.61580e-08 79574 388.06 2081.02 1.21275e-54 1
msc98-ip 126430 107.28 937.60 1.31193e-07 126553 109.15 0.42 5.58897e-71 1
noswot 221 0.01 0.06 2.89565e-10 229 0.05 0.01 9.10199e-88 1
ns1904248 167345 784.86 3796.06 9.60730e-10 167785 728.52 5.90 6.13848e-79 2
pilot87 11381 10.95 3635.76 3.52688e-10 11383 14.52 1817.25 7.33788e-60 1
rail01 142104 406.35 5517.79 5.31826e-14 142181 414.17 2.28 2.52325e-74 1
ran14x18-disj-8 621 0.12 12.26 1.96998e-12 622 0.66 4.11 1.27150e-68 1
seymour-disj-10 8018 2.93 106.76 6.20706e-10 8020 4.55 6.89 5.60644e-73 1
small000 705 0.03 0.48 6.66658e-12 738 0.25 0.07 4.27459e-92 1
small001 795 0.03 0.52 4.09592e-13 824 0.25 0.08 9.78188e-89 1
small002 790 0.02 0.64 5.25500e-13 821 0.26 0.16 2.20124e-86 1
small003 794 0.05 0.55 6.66705e-12 828 0.26 0.08 3.70605e-90 1
small004 789 0.04 0.53 6.66654e-13 823 0.25 0.07 8.97819e-91 1
small005 764 0.05 0.55 7.46174e-13 798 0.27 0.08 8.22301e-91 1
small006 764 0.07 0.52 6.66733e-13 807 0.27 0.07 6.28624e-91 1
small007 678 0.05 0.61 6.66733e-13 740 0.28 0.06 3.17979e-84 2
small008 672 0.04 0.58 4.37694e-13 732 0.26 0.08 4.71453e-85 2
small009 628 0.04 0.76 1.16554e-12 688 0.25 0.07 1.86784e-89 1
small010 606 0.05 0.74 4.66169e-13 646 0.12 0.06 1.10441e-89 1
stat96v5 4192 7.16 3692.31 5.54481e-10 4527 14.60 1653.70 1.10266e-59 1
unitcal 7 57353 25.50 38.07 5.19549e-11 57363 29.58 0.99 1.95114e-74 4
watson 1 224894 847.72 3555.79 9.96540e-10 225192 883.64 17.83 1.20810e-75 1
world 84623 209.02 8714.77 9.64974e-10 84665 221.66 5.84 4.61431e-31 4

Instances (74) 4680 1.11 17.43 4863 2.00 1.40



5. CONCLUSION
In summary, we have described an iterative refinement al-

gorithm for linear programming and demonstrated it to be
efficient in practice for computing extended precision solu-
tions on a wide range of LPs coming from industrial appli-
cations. Additionally, when used as a subroutine for solving
the LPs exactly, iterative refinement is considerably faster
than using extended precision pivoting.

Future research directions could include a tighter integra-
tion of incremental precision boosting, rational reconstruc-
tion, and iterative refinement. Such an integration could
both improve the speed and applicability of these techniques,
in particular on instances too poorly conditioned for the
double-precision LP subroutines.
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M. Jünger, G. Klau, P. Mutzel, and R. Weiskircher. A
branch-and-cut approach to the crossing number
problem. Discrete Optimization, 5(2):373 – 388, 2008.

[4] D. Bulutoglu and D. Kaziska. Improved WLP and
GWP lower bounds based on exact integer
programming. J. of Stat. Plan. and Inference,
140(5):1154 – 1161, 2010.

[5] B. A. Burton and M. Ozlen. Computing the crosscap
number of a knot using integer programming and
normal surfaces. Preprint available on arXiv.org, 2011.
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[22] F. Ordóñez and R. Freund. Computational experience
and the explanatory value of condition measures for
linear optimization. SIAM J. on Optimization,
14(2):307–333, 2003.

[23] V. Y. Pan. Nearly optimal solution of rational linear
systems of equations with symbolic lifting and
numerical initialization. Computers & Mathematics
with Applications, 62(4):1685–1706, 2011.

[24] B. D. Saunders, D. H. Wood, and B. S. Youse.
Numeric-symbolic exact rational linear system solver.
In Proceedings of the 36th international symposium on
Symbolic and algebraic computation, ISSAC ’11, pages
305–312, New York, NY, USA, 2011. ACM.

[25] SoPlex Version 1.6. http://soplex.zib.de/.

[26] S. Ursic and C. Patarra. Exact solution of systems of
linear equations with iterative methods. SIAM
Journal on Matrix Analysis and Applications,
4(1):111–115, 1983.

[27] Z. Wan. An algorithm to solve integer linear systems
exactly using numerical methods. J. of Symbolic
Computation, 41(6):621–632, 2006.

[28] J. H. Wilkinson. Rounding Errors in Algebraic
Processes. Prentice Hall, Englewood Cliffs, NJ, 1963.

[29] R. Wunderling. Paralleler und objektorientierter
Simplex-Algorithmus. PhD thesis, Technische
Universität Berlin, 1996.

[30] Chee K. Yap. Robust geometric computation. In
Jacob E. Goodman and Joseph O’Rourke, editors,
Handbook of discrete and computational geometry,
pages 653–668. CRC Press, Inc., Boca Raton, FL,
USA, 1997.


