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Abstract

In this paper, we study the local diagnosability and strong local diagnosabil-
ity properties for (n, k)-star graphs and Cayley graphs generated by 2-trees.
Moreover, we also consider the corresponding problem with missing edges.
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1. Introduction

Large scale multiprocessor computing systems are ubiquitous, and many
models have been proposed for the underlying network structure. One im-
portant characteristic of a network is that its structure facilitates the iden-
tification, or diagnosis, of faulty processors in the system. Ideally a precise
diagnosis can be made, identifying exactly which processors have developed
faults; this property is generally referred to as diagnosability. A variety of
models have been proposed for measuring diagnosability and differ in the
mechanism by which processors are tested for faults. Our study considers
diagnosability under the comparison model of Maeng and Malek [1] and the
corresponding notion of local diagnosability introduced by Hsu and Tan [2].
The classes of (n, k)-star graphs and Cayley graphs generated by 2-trees are
analyzed and it is proven that they both have the strong local diagnosability
property. Additionally, these networks are shown to still satisfy the strong
local diagnosability property after a number of communication links are re-
moved, as long as the number of links removed does not exceed some specified
bounds.
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2. Preliminaries and local diagnosability

A network is modeled as an undirected graph G = (V,E), following stan-
dard terminology, with each processor represented as a node and each com-
munication link represented as an undirected edge. A number of models have
been proposed for diagnosing faulty processors in a network, and we follow
the comparison model of Maeng and Malek [1]. Under this model, diagnosis
is performed by carrying out the following operations. Each node w can send
identical test signals to any pair u and v of its neighbors. It then compares
their responses and returns failure if the results are different and success if
they are the same. If w itself is faulty, its result is unreliable and may re-
turn either failure or success, regardless of the status of u, v. The following
assumptions are made: If w returns success it is assumed that, unless w is
faulty itself, both u and v are fully functional; if the responses are different
it can be concluded that at least one of w, u or v is faulty.

After a set of tests has been performed, the result is referred to as a syn-
drome. Each syndrome can be represented by a function σ : C → {0, 1}
where C is the set of all comparisons made, each of which can be indexed
as (u, v)w, denoting a comparison of u and v performed from w as described
above. The value σ((u, v)w) is defined to be 1 if the comparison of u and v
by w returned failure, and it is defined to be 0 if w returned success.

For a set of faulty processors F ⊆ V , we say that a syndrome σ is con-
sistent with F if σ is a possible result of a test performed on the network
with these faulty processors. For F ⊆ V we define σF to be the set of
all syndromes consistent with F . Note that syndromes may not correspond
uniquely to sets of faulty nodes, we might have σ ∈ σF1 ∩σF2 where F1 6= F2,
in such cases this test result would not be enough to confidently diagnose the
faulty nodes. A graph is said to be t-diagnosable if for every F, F ′ ⊆ V with
|F |, |F ′| ≤ t, we have σF ∩ σF ′ = ∅ whenever F ′ 6= F .

The notion of local diagnosability, introduced by Hsu and Tan [2], con-
siders diagnosability locally on a node-by-node basis; this is especially rel-
evant for networks with varying structure, or for studying a network with
removed edges. A node v is locally t-diagnosable if for every F, F ′ ⊆ V
with |F |, |F ′| ≤ t such that v ∈ F , the condition σF ∩ σF ′ 6= ∅ implies that
v ∈ F ′. Node v has the strong local diagnosability property if v is locally
degG(v)-diagnosable, where degG(v) denotes the degree of node v in graph G.
A graph G has the strong local diagnosability property if each node v in G is
locally degG(v)-diagnosable. It is shown in [2] that this notion generalizes the
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global notion of t-diagnosability in the following sense: a system G = (V,E)
is t-diagnosable if and only if G is locally t-diagnosable at every node.

The following proposition of [3] gives a sufficient condition for a node
being n-diagnosable. Before we state this, we need a definition. Given a star
K1,r centered at node v, replace each edge by a path of length 4. This is
called an extended star of order r at node v, and it is denoted by ES(v; r) as
in [4]. The following proposition is a crucial part of our study.

Proposition 2.1 ([3]). Let v be a node in G = (V,E). If there exists an
extended star of order degG(v) at node v in G, then v is locally degG(v)-
diagnosable.

3. Diagnosability of (n, k)-star graphs

The (n, k)-star graph [5], denoted by Sn,k, is defined for positive integers
n and k such that n > k ≥ 2. The node set is all of the permutations on k ele-
ments of the set {1, 2, . . . , n}. Two nodes corresponding to the permutations
[a1, a2, . . . , ak] and [b1, b2, . . . , bk] are adjacent if and only if either:

(1) There exists an integer 2 ≤ s ≤ k such that a1 = bs and b1 = as and
for any i 6= s, 1 < i ≤ k, we have ai = bi. (That is, [b1, b2, . . . , bk] is obtained
from [a1, a2, . . . , ak] by swapping a1 and as.)

(2) For all i such that 2 ≤ i ≤ k, we have ai = bi and a1 6= b1. (That is,
[b1, b2, . . . , bk] is obtained from [a1, a2, . . . , ak] by replacing a1 by an element
in {1, 2, . . . , n} − {a1, a2, . . . , ak}.)

Figure 1: S4,2 Figure 2: S4,3

See Figures 1 and 2 for S4,2 and S4,3, respectively. (For simplicity, we use
123 instead of [1, 2, 3] to represent the corresponding permutation.)

Let the set of nodes representing permutations whose kth element is i
be Hi for 2 ≤ i ≤ n. It can easily be seen that Sn,k is (n − 1)-regular as
each node has k− 1 neighbors by adjacency rule (1) and n− k neighbors by
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adjacency rule (2). Let us first note some other preliminary facts about Sn,k:
Hi is isomorphic to Sn−1,k−1 when n > k > 2; and for each pair Hi and Hj,

there are exactly (n−2)!
(n−k)! independent edges between them.

In order to determine the local diagnosability, the key is to apply Propo-
sition 2.1. Two lemmas are needed, one for local diagnosability and one for
local diagnosability with missing edges. However, one is simply a special case
of the next result when no edges are missing. The ideal statement is: Let
n ≥ 4 and 2 ≤ k ≤ n − 1. If Fe is an arbitrary set of missing edges with
|Fe| ≤ n − 3, then for every node v in Sn,k, there exists an extended star
of order degSn,k−Fe

(v) at v in Sn,k − Fe. But this statement is not true, in
fact it is easy to see that if G is r-regular with a p-clique then the maximum
number of faulty edges we can allow is r−p. (See Figure 3. After the two red
edges are deleted, there is no extended star of order 6 at the square vertex.)

Lemma 3.1. Let n ≥ 4 and 2 ≤ k ≤ n− 1 such that (n, k) 6= (4, 2). If Fe

is an arbitrary set of missing edges in Sn,k with |Fe| ≤ k − 2, then for every
node v in Sn,k, there exists an extended star ES(v; degSn,k−Fe

(v)) of order
degSn,k−Fe

(v) at v in Sn,k − Fe.

Proof. S4,2 is too small to have the required extended star. We verify the
result for S5,2 and S4,3. S5,2 is easy as the set Fe must be empty and checking
this property for any single node v is sufficient since S5,2 is node transitive.
For S4,3 we note that, although it can also easily be verified by hand, S4,3

∼= S4

and Lemma 7 of [4] establishes precisely the same result for Sn with n ≥ 4
as long as the set of faulty edges has size at most n− 3.

Next consider the case k = 3, when |Fe| ≤ 1. We will use a less well-
known decomposition on Sn,k applied to Sn,3. The node set of Sn,3 can be
partitioned into four sets as follows. The first set, denoted by Wn−1, is the
set of nodes in Sn,3 with n in the first position. Clearly Wn−1 forms an
independent set, and it has (n− 1)(n− 2) nodes. For i = 2, 3, let Yi be the
set of nodes with symbol n in position i. These are the second and third sets,
and each induces a subgraph isomorphic to Sn−1,2. Finally, the fourth set
is the set of nodes without the symbol n. This last set induces a subgraph
isomorphic to Sn−1,3, and each of its nodes has exactly one neighbour in
Wn−1. Moreover, if each set of nodes in the partition is identified to a single
node, the resulting graph is a K1,3 with the center obtained from Wn−1. We
now apply induction on n. We have already checked the result for S4,3, so
consider Sn,3 with n ≥ 5. Since Sn,3 is node-transitive, we may assume that
v is in the subgraph H isomorphic to Sn−1,3. Since this subgraph contains
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at most k − 2 = 1 element of Fe, we can apply the induction hypothesis to
obtain an extended star A in H. Let y be the unique neighbour of v in Wn−1.
If (v, y) ∈ Fe, then we are done, so we may assume that (v, y) 6∈ Fe. Now y
has exactly two neighbours, one in Y1 and the other in Y2. Since |Fe| ≤ 1, it
is clear A can be extended to a desired extended star.

The case k = 2 can be done similarly, and in fact it is easier since |Fe| = 0,
so there are no faults.

We proceed with induction on k, so assume k ≥ 4. Let Hi be the subgraph
of Sn,k with i in the kth position for 1 ≤ i ≤ n. Then each Hi is isomorphic
to Sn−1,k−1, and every node in Hi has exactly one neighbour not in Hi. For
notational convenience, we may assume that v is in Hn. Let e be the edge
between v and the node y obtained by swapping the symbols in the first
position and the kth position of v. So y is in Hj for some j 6= n. We consider
two cases.

Case 1: Hn contains at most k − 3 elements of Fe.
We apply the induction hypothesis to obtain an extended star A of order
degHn−Fe

(v) at v in Hn − Fe. If e ∈ Fe, then A is our desired extended
star. Suppose e 6∈ F . Then this extended star is incomplete as it does not
contain the node w, which is in Hj. Since |Fe| ≤ k−2, the subgraph Hj−Fe

is connected as Hj has edge-connectivity n − 2. So we can find a 3-path
in Hj starting at y. Attach this 3-path to A via e and we obtain the desired
extended star.

Case 2: Hn contains all the elements of Fe.
Let f be an arbitrary element of Fe and let F ′e = Fe − {f}. Apply the
induction hypothesis to obtain an extended star A of order degHn−F ′

e
(v) at v

in Hn−F ′e. If A does not contain f or if f is incident with v (so degHn−Fe
(v) =

degHn−F ′
e
(v) − 1), then we can complete the proof as in Case 1 to get the

desired extended star. So we may assume otherwise. Now A contains f =
(w,w′), where w is closer to v than w′ is to v in A. Let p be the distance
between w and v in A. So 1 ≤ p ≤ 3. Node w is adjacent to a node z in
Sn,k where z is not in Hn. Since Hn contains all the elements of Fe, we have
(w, z) 6∈ Fe. Consider two subcases. The first is when z is not in Hj, say z
is in Hi = Hi − Fe. Find a (4 − p − 1)-path starting at z in Hi = Hi − Fe

together with a 3-path starting at y in Hj = Hj − Fe as in Case 1. The
second case is when z is in Hj. Note that y 6= z as it is not possible for both
v and w to be adjacent to the same node in Hj (since every node can have
only one “outside” neighbour.) We are done if we can find two node-disjoint
paths in Hj, one being a 3-path starting at y and one being a (4−p−1)-path
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starting at w. One can easily check that this claim is true for Sn,3 since Hj

contains Sn,3 as a subgraph, so we are done. (Note that 4 − p − 1 ≤ 2, so
these two paths have at most eight nodes.)

We are now ready to obtain our main result for Sn,k using Proposition 2.1
and Lemma 3.1. (Note that taking Fe = ∅ in the following theorem gives the
corresponding result with no missing edges.)

Theorem 3.2. Let n ≥ 4 and 2 ≤ k ≤ n − 1 with n + k ≥ 7. If Fe is an
arbitrary set of missing edges with |Fe| ≤ k− 2, then for each node v in Sn,k

with missing edges Fe, node v has the strong local diagnosability property in
Sn,k − Fe, hence Sn,k − Fe has the strong local diagnosability property.

4. Diagnosability of Cayley graphs generated by 2-trees

Let Γ be a finite group, and let ∆ be a set of elements of Γ such that
the identity of the group does not belong to ∆. The Cayley graph Γ(∆)
is the directed graph with node set Γ with an arc directed from u to v if
and only if there is an s ∈ ∆ such that u = vs. The Cayley graph Γ(∆) is
strongly connected if and only if ∆ generates Γ. A Cayley graph is always
node-transitive. If whenever u ∈ ∆, we also have its inverse u−1 ∈ ∆, then
for every arc, the reverse arc is also in the graph. So we can treat this Cayley
graph as an undirected graph by replacing each pair of arcs by an edge.

Here, we choose the finite group to be the alternating group Γn, the set
of even permutations on {1, 2, . . . , n}, and the generating set ∆ to be a set
of 3-cycles. In this paper, a permutation may be recorded and referenced
either via its cycle decomposition or as a rearrangement of symbols. For ex-
ample, (12)(34)(567)(8) is the cycle decomposition of the permutation whose
rearrangement representation is [2, 1, 4, 3, 6, 7, 5, 8]. Thus the nodes of the
corresponding Cayley graph Γn(∆) are the even permutations. To get an
undirected Cayley graph, we will assume that whenever a 3-cycle (abc) is in
∆, so is its inverse, (acb). Since (abc), (bca), and (cab) represent the same
permutation, the set {a, b, c} uniquely represents this 3-cycle and its inverse.
So we can depict ∆ via a graph H with node set {1, 2, . . . , n}, where a tri-
angle K3 on nodes a, b, and c corresponds to each pair of a 3-cycle (abc) and
its inverse in ∆.

It is easy to see that the Cayley graph generated by the 3-cycles in ∆ is
connected if its corresponding graph is connected. Since an interconnection
network needs to be connected, we require H graph to be connected. In
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Figure 3: An example
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Figure 4: A 2-tree

general, this graph may have superfluous K3s formed by nodes that do not
correspond to a 3-cycle in ∆. We will avoid this possibility by considering
a simpler case when H has a tree-like structure. Such a graph is built by
the following procedure. We start from K3, then repeatedly add a new node,
joining it to exactly two adjacent nodes of the previous graph. Any graph
obtained by this procedure is called a 2-tree. If v is a node of a 2-tree H with
the property that H can be generated in such a way that v is the last node
added, then v is called a leaf of the 2-tree. Figure 4 provides an example of
a 2-tree (with leaves 5 and 7).

Now let H be a 2-tree, in which the K3s correspond to the 3-cycles of ∆.
The graph H will be called the 3-cycle generating graph of Γn(∆) or simply
its generating graph if it is clear from the context. We call Γn(∆) the Cayley
graph generated by H. Graph H is simply a pictorial representation of the
elements in ∆.

We need the following lemma. Since in the lemma graph G contains
triangles and its nodes each have degree 2n− 4, we can allow at most 2n− 7
missing edges in G.

Lemma 4.1. Let G be a Cayley graph generated by a 2-tree on {1, 2, . . . , n}
with n ≥ 5, and let Fe be an arbitrary set of missing edges with |Fe| ≤ 2n−7.
For every node v in G, there exists an extended star of order degG−Fe

(v) at v
in G− Fe.

Proof. For n = 5, there are only two possibilities, each generates a graph
with 60 nodes where |Fe| ≤ 3. They were checked by an ad hoc argument as
well as a computer check. The computer check was done using the NetworkX
python package (available at http://networkx.github.com/). For each of
the two graphs it was verified that fixing any single node and deleting any
set of edges Fe with size at most 3, the graphs still contain an extended star
ES(v; degG−Fe

(v)). Although there were a large number of cases to check,
the entire check could be completed in only a few minutes because it was
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often very easy to grow the extended star from v using a randomized greedy
construction algorithm.

Now assume the result is true for all Cayley graphs obtained from 2-trees
on {1, 2, . . . , n − 1} with n ≥ 6 and let G be a Cayley graph obtained from
a 2-tree T on {1, 2, . . . , n}. We may assume that n is a leaf in T . Let T ′ be
obtained from T by deleting n, and let G′ be the Cayley graph generated
by T ′. Let Hi be the subgraph of G induced by nodes with i in the last
position for each i, 1 ≤ i ≤ n. Then each Hi is isomorphic to G′ and every
node in Hi has exactly two neighbours not in Hi, and they are in different
Hjs. For notational convenience, we may assume that v is in Hn. Node v is
adjacent to two nodes not in Hn, let these be node y in Hj and node z in Hq,
where n, j, q are distinct. We consider three cases.

Case 1: Hn contains at most 2n− 9 elements of Fe.
Apply the induction hypothesis for Hn − Fe to obtain an extended star A
of order degHn−Fe

(v) at v in Hn − Fe. If (v, y) ∈ Fe, then we do not need
to extend A via (v, y). Suppose that (v, y) 6∈ Fe. Now y is in Hj. Since
|Fe| ≤ 2n−5, graph Hj−Fe is connected as Hj has edge-connectivity 2n−4.
So we can find a 3-path in Hj starting at y and attach it to A via (v, y).
Repeating the argument for (v, z) yields the desired extended star in G−Fe.

Case 2: Hn contains exactly 2n− 8 elements of Fe.
Let f be an arbitrary element of Fe and let F ′e = Fe − {f}. Apply the
induction hypothesis to obtain an extended star A of order degHn−F ′

e
(v) at v

in Hn − F ′e. If A does not contain f , or f is incident with v, then we can
complete the proof as in Case 1 to get the desired extended star. So we may
assume that A contains edge f = (w,w′), where node w is closer to v along A
than w′. Let p be the distance between v and w in A, so 1 ≤ p ≤ 3. Since
Hn contains all but one elements of Fe, and w is adjacent to two nodes not
in Hn, there is a node x adjacent to w such that (w, x) 6∈ Fe and x is not
in Hn. We consider two subcases. The first is if x is in neither Hj nor Hq.
So, say, x is in Hi − Fe. Find a (4 − p − 1)-path starting at x in Hi − Fe

together with a 3-path (if necessary) starting at y in Hj − Fe and a 3-path
(if necessary) starting at z in Hq − Fe to complete the extended star as in
Case 1. We can easily do these since there is only one edge of Fe outside Hn.

The second subcase is when x has to be in either Hj or Hq. Since Fe has
only one element outside Hn, we may assume that x is in Hj and Fe has no
elements in Hj. Note that y 6= x as it is not possible for both v and w to
be adjacent to the same node in Hj. We are done if we can find two node-
disjoint paths in Hj = Hj −Fe, a 3-path starting at y and a (4− p− 1)-path
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starting at w. One can easily check that this claim is true for n = 5, and
since Hj contains one of these as a subgraph, we are done.

Case 3: Hn contains all the elements of Fe.
Let f, f ′ be arbitrary elements of Fe and let F ′e = Fe − {f, f ′}. Apply the
induction hypothesis to obtain an extended star A of order degHn−F ′

e
(v) at v

in Hn − F ′e. We may assume that A contains both f and f ′ and neither f
nor f ′ is incident with v, otherwise we can complete the proof as in Case 1
to get the desired extended star. Moreover, we may assume that f and f ′

belong to different paths in A, otherwise we can apply the same proof as in
Case 2. Let f = (w,w′) where w is closer to v along A than w′, and let
f ′ = (t, t′) where t is closer to v than t′. Each of w and t has two neighbours
outside Hn in distinct Hls. Choose one neighbour for each in different Hl’s.
The argument in Case 2 applies and the proof is complete.

Proposition 2.1 and Lemma 4.1 yields our main result for Cayley graphs
generated by 2-trees. (Again, letting Fe = ∅, we have the corresponding
result with no missing edges.)

Theorem 4.2. Let G be a Cayley graph generated by a 2-tree on {1, 2, . . . , n}
with n ≥ 5, and let Fe be an arbitrary set of missing edges with |Fe| ≤ 2n−7.
For each node v in G, node v has the strong local diagnosability property in
G− Fe, so G− Fe has the strong local diagnosability property.
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