
Noname manuscript No.
(will be inserted by the editor)

A Hybrid Branch-and-Bound Approach for Exact Rational
Mixed-Integer Programming

William Cook · Thorsten Koch· Daniel E. Steffy ·
Kati Wolter

the date of receipt and acceptance should be inserted later

Abstract We present an exact rational solver for mixed-integer linear programming
that avoids the numerical inaccuracies inherent in the floating-point computations
used by existing software. This allows the solver to be used for establishing theo-
retical results and in applications where correct solutions are critical due to legal
and financial consequences. Our solver is a hybrid symbolic/numeric implementa-
tion of LP-based branch-and-bound, using numerically-safe methods for all binding
computations in the search tree. Computing provably accurate solutions by dynam-
ically choosing the fastest of several safe dual bounding methods depending on the
structure of the instance, our exact solver is only moderately slower than an inexact
floating-point branch-and-bound solver. The software is incorporated into the SCIP
optimization framework, using the exact LP solver QSOPT EX and the GMP arith-
metic library. Computational results are presented for a suite of test instances taken
from the MIPLIB and Mittelmann libraries and for a new collection of numerically
difficult instances.

Keywords Mixed integer programming· branch-and-bound· exact computation

Mathematics Subject Classification (2000)90C10· 90C11· 90C57

Research supported by NSF Grant CMMI-0726370, ONR Grant N00014-12-1-0030, and the DFG Priority
Program 1307 “Algorithm Engineering”.

W. Cook
School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
E-mail: bico@isye.gatech.edu

T. Koch · K. Wolter
Zuse Institute Berlin, Takustr. 7, Berlin, 14195 Berlin, Germany
E-mail: koch@zib.de

D. E. Steffy
Department of Mathematics and Statistics, Oakland University, Rochester, MI, USA
E-mail: steffy@oakland.edu

K. Wolter
E-mail: wolter@zib.de

2 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

1 Introduction

Mixed-integer programming (MIP) is a powerful and flexible tool for modeling and
solving decision problems. Software based on these ideas isutilized in many applica-
tion areas. Despite their widespread use, few available software packages provide any
guarantee of correct answers or certification of results. Possible inaccuracy is caused
by the use of floating-point (FP) numbers [25]. FP-calculations necessitate the use of
built-in tolerances for testing feasibility and optimality, and can lead to calculation
errors in the solution of linear-programming (LP) relaxations, in the methods used
for creating cutting planes to improve these relaxations and in pre-solving routines
applied to strengthen models.

Due to a number of reasons, for many industrial MIP applications near optimal
solutions are sufficient. CPLEX [26], for example, terminates if the relative gap be-
tween upper and lower bound is less then 0.001 (relative MIP optimality tolerance).
Moreover, when data describing a problem arises from imprecise sources, exact fea-
sibility is usually not necessary. Nonetheless, accuracy is important in many settings.
Direct examples arise in the use of MIP models to establish fundamental theoretical
results and in subroutines for the construction of provablyaccurate cutting planes.
Furthermore, industrial customers of MIP software requestmodules for exact solu-
tions in critical applications. Such settings include the following.

– Chip design verification in the VLSI design process [2].
– Compiler optimization, including instruction scheduling[45].
– Combinatorial auctions [19], where serious legal and financial consequences can

result from incorrect solutions.

Chip design verification and compiler optimization are applications where demon-
strating that a particular MIP instance has no feasible solutions is equivalent to veri-
fying the correctness of a proposed point. For pure feasibility problems such as these,
accurate answers are extremely important.

The article describing the latest version of the mixed-integer programming li-
brary, MIPLIB 2010, discusses the limitations of finite-precision arithmetic in the
context of mixed-integer programming [29]. Problem instances were collected from
a wide range of applications and a number of the instances were classified as nu-
merically unstable. We now report some computational behavior observed on these
instances after they were passed to different solvers usinga variety of parameter set-
tings. When called to solve the instancetransportmoment, under default parameter
settings, SCIP 2.1 [2,3,46] (using the SOPLEX 1.6 [47] LP solver) reports to have
found an optimal solution, while CPLEX 12.3 claims that the instance is infeasible or
unbounded. However, if presolving and cutting planes are disabled, SCIP claims the
problem to be unbounded, (but warns of an error in the proof ofunboundedness), and
CPLEX reports finite primal and dual bounds. Another example from MIPLIB 2010
is the instancens2122603 which at the printing of the paper [29] was incorrectly
thought to be infeasible, the answer returned by CPLEX 12.2 (and 12.3); after dis-
abling presolving in CPLEX, a feasible solution can quickly be identified.

Other examples of numerically difficult MIPs occur in the chip design verification
instances collected by Tobias Achterberg [2]. There are a total of 98 instances, which

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 3

are publicly available for download [1]. These instances model property checking on
simple arithmetic logical units (ALU). Proving infeasibility of analu instance certi-
fies the correctness of the unit, whereas a feasible solutiongives a counter example to
the correctness of the design. Although the instances are pure IPs defined by integral
data, incorrect conclusions are reached on some of them. Forexample, the instance
alu10 7, when calling SCIP 2.1 or CPLEX 12.3 with default settings or with cutting
planes and presolving disabled, we get the three different solution values 83, 84, 91.
However, none of these values are correct as, by construction, the instance is known
to be infeasible. The solutions returned by the solvers onlyviolate the constraints by a
small amount and satisfy the relative tolerance thresholdsused to measure feasibility,
so they are accepted as valid solutions and returned to the user. Further numerically
difficult instances are presented in Sect. 6.

Software libraries such as the GNU Multiple Precision Arithmetic Library
(GMP) [24] offer routines for infinite-precision rational arithmetic; in contrast to
the commonly used finite-precision arithmetic systems, GMPdynamically allocates
as much memory as is necessary to exactly represent numbers and is limited only by
the available system memory. We use the termssymbolicor exactwhen referring to
this type of exact computation over the rational numbers; weuse the termsnumericor
approximatewhen referring to the use of inexact finite-precision and floating-point
computation. One straightforward strategy to solve MIPs exactly would be to im-
plement the standard solution procedures entirely in exactarithmetic. Unfortunately,
it has been observed that optimization software relying exclusively on exact arith-
metic can be prohibitively slow [8]. This motivates the development of more sophis-
ticated algorithms to compute exact solutions. Significantprogress has been made
recently toward computationally solving LP models exactlyover the rational num-
bers using hybrid symbolic/numeric methods [8,20,22,27,30], including the release
of the software QSOPT EX [7]. Exact MIP has seen less computational progress, but
significant first steps have been taken. An article by Neumaier and Shcherbina [35]
describes methods for safe MIP computation, including strategies for generating safe
LP bounds, infeasibility certificates, and cutting planes.Their methods include di-
rected rounding and interval arithmetic with FP-numbers toavoid incorrect results.

This article introduces a hybrid branch-and-bound approach for solving MIPs ex-
actly over the rational numbers. It can be extended to a branch-and-cut algorithm with
primal heuristics and presolving; but the focus of this article is on the development
of the basic branch-and-bound approach. Section 2 describes how exact rational and
safe-FP computation can be coupled together, providing a fast and general frame-
work for exact computation. Section 3 discusses several methods for computing valid
LP bounds, a critical component of the hybrid approach. It describes an exact branch-
and-bound implementation within SCIP and includes detailed computational results
on a range of test libraries comparing different dual bounding strategies. In Sect. 4,
the implementation is further improved by incorporating sophisticated branching
rules. The resulting exact solver is compared against a floating-point solver restricted
to pure branch-and-bound and observed to be only moderatelyslower. In Sect. 5, it is
used to test the accuracy of current floating-point MIP solvers and in Sect. 6 it is ap-
plied to a test set of numerically difficult instances. As ourfocus has been exclusively
on the branch-and-bound procedure, the exact solver is still not directly competitive

4 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

with the full version of SCIP. However, it is realistic to think that the future inclusion
of additional MIP machinery such as cutting planes, presolving, and primal heuristics
into this exact framework could lead to a full featured exactMIP solver that is not
prohibitively slower than its inexact counterparts.

2 Hybrid Rational/Safe Floating-Point Approach

Two ideas for exact MIP proposed in the literature, and tested to some extent, are the
pure rational approach[8] and thesafe-FP approach[17,35]. Both utilize LP-based
branch-and-bound. The difference lies in how they ensure the computed results are
correct.

In thepure rational approach, correctness is achieved by storing the input data as
rational numbers, by performing all arithmetic operationsover the rational numbers,
and by applying an exact LP solver [22] in the dual bounding step. This approach
is especially interesting because it can handle a broad class of problems: MIP in-
stances described by rational data. However, replacing allFP-operations by ratio-
nal computation increases running times significantly. Forexample, while the exact
LP solver QSOPT EX avoids many unnecessary rational computations and is efficient
on average, Applegate et al. [8] observed a greater slowdownwhen testing an exact
MIP solver that relied on rational arithmetic and called QSOPT EX for each node
LP computation (see also Sect. 3.1).

In order to limit the degradation in running time, the idea ofthe safe-FP ap-
proach is to continue to use FP-numbers as much as possible, particularly within
the LP solver. However, extra work is necessary to ensure correct decisions in the
branch-and-bound algorithm. Correctness of certain computations can be ensured by
controlling the rounding mode for FP-operations. Valid dual bounds can often be ob-
tained by post-processing approximate LP solutions; this type of safe dual bounding
technique has been successfully implemented in CONCORDE [6] for the traveling
salesman problem. A generalization of the method for MIPs isdescribed in [35]. Fur-
thermore, the idea of manipulating the rounding mode can be applied to cutting-plane
separation. In [17], this idea was used to generate numerically safe Gomory mixed-
integer cuts. Nevertheless, whether the safe-FP approach leads to acceptable running
times for general MIPs has not been investigated. Although the safe-FP version of
branch-and-bound has great advantages in speed over the pure rational approach, it
has several disadvantages. Everything, including input data and primal solutions, is
stored as FP-numbers. Therefore, correct results can only be ensured for MIP in-
stances that are given by FP-representable data and that have a FP-representable op-
timal solution if they are feasible. Some rationally definedproblems can be scaled
to have FP-representable data. However, this is not always possible due to the lim-
ited representation of floating-point numbers, and the resulting large coefficients can
lead to numerical difficulties. The applicability is even further limited as the safe dual
bounding method discussed in [35] requires, in general, lower and upper bounds on
all variables. Weakness in the safely generated bound values may also increase the
number of nodes processed by the branch-and-bound solver. Additionally, due to nu-

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 5

merical difficulties, some branch-and-bound nodes may onlybe processable by an
exact LP solver.

To summarize, the pure rational approach is always applicable but introduces a
large overhead in running time while the safe-FP approach ismore efficient but of
limited applicability.

Since we want to solve MIPs that are given by rational data efficiently and ex-
actly we have developed a version of branch-and-bound that attempts to combine the
advantages of the pure rational and safe-FP approaches, andto compensate for their
individual weaknesses. The idea is to work with two branch-and-bound procedures.
Themain procedureimplements the rational approach. Its result is surely correct and
will be issued to the user. The other one serves as aslave procedure, where the faster
safe-FP approach is applied. To achieve reasonable runningtime, whenever possible
the expensive rational computation of the main procedure will be skipped and certain
decisions from the faster safe-FP procedure will be substituted. In particular, safe dual
bound computations in the slave procedure can often replaceexact LP solves in the
main procedure. The rational procedure provides the exact problem data, allows for
the storage of exact primal solutions, and makes exact LP solves possible whenever
needed.

The complete procedure is given in Alg. 1. The set of FP-representable numbers
is denoted byM; lower and upper approximations ofx ∈ Q are denotedx ∈ M and
x∈M, respectively. We now explain the details of the algorithm.

The slave procedure, which utilizes the safe-FP approach, works on a MIP in-
stance with FP-representable data. It is set up in Step 1 of the algorithm. If the input
data are already FP-representable, both procedures solve the same MIP instance, i.e.,
P̃ := P and c̃ := c in Step 1. Otherwise, an approximation of the MIP withP ≈ P̃,
c≈ c̃ or a relaxation withP⊆ P̃, c= c̃ is constructed; calledFP-approximationand
FP-relaxation, respectively. The choice depends on the dual bounding method ap-
plied in the slave procedure (see Sect. 3).

On the implementation side, we maintain only a single branch-and-bound tree. At
the root node of this common tree, we store the LP relaxationsof both procedures:
max{cTx : x∈ LP} with LP := {x∈ Rn : Ax≤ b} and max{c̃Tx : x∈ L̃P} with L̃P :=
{x ∈ Rn : Ãx≤ b̃}. In addition, for each node, we know the branching constraint
that was added to create the subproblem in both procedures. Branching on variables,
performed in Step 8, introduces the same bounds for both procedures.

The use of primal and dual bounds to discard subproblems (seeSteps 5, 6, and 7)
is a central component of the branch-and-bound algorithm. In particular, in the ex-
act MIP setting, the efficiency highly depends on the strength of the dual bounds and
the time spent generating them (Step 5). The starting point of this step is an approxi-
mate solution of the LP relaxation of the MIP. It is obtained in the slave procedure by
an LP solver that works on FP-numbers and allows rounding errors; referred to asin-
exact LP solver. Depending on the result, we check whether the exact LP relaxation is
also infeasible or we compute a safe dual bound by post-processing the approximate
LP solution. Different techniques are discussed in Sect. 3 and are computationally
evaluated in Sect. 3.6.

Dual and primal bounds are stored as FP-numbers and the bounding in Step 6
is performed without tolerances; a computed bound that is not FP-representable is

6 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Algorithm 1 Hybrid branch-and-bound for exact rational MIP

Input : (MIP) max{cTx : x ∈ P} with P := {x ∈ Rn : Ax≤ b, xi ∈ Z for all i ∈ I},
A∈Qm×n, b∈Qm, c∈Qn, andI ⊆ {1, . . . ,n}.

Output : Exactoptimal solutionx⋆ of MIP with objective valuec⋆ or conclusion that
MIP is infeasible (c⋆ =−∞).

1. FP-problem Store (FP-MIP) max{c̃Tx : x ∈ P̃} with P̃ := {x ∈ Rn : Ãx ≤ b̃,
xi ∈ Z for all i ∈ I}, Ã∈Mm×n, b̃∈Mm, andc̃∈Mn.

2. Init SetL := {(P, P̃)}, L :=−∞, xMIP to be empty, andcMIP :=−∞.

3. Abort If L = /0, stop and returnxMIP andcMIP.

4. Node selection Choose(Pj , P̃j) ∈ L and setL := L \{(Pj , P̃j)}.

5. Dual bound Solve LP relaxation max{c̃Tx : x∈ L̃P j} approximately.

(a) If L̃P j is claimedto be empty,safelycheck ifLPj is empty.

i. If LPj is empty, setc⋆ :=−∞.

ii. If LPj is not empty, solve LP relaxation max{cTx : x ∈ LPj} exactly.
Let x⋆ be anexactoptimal LP solution andc⋆ its objective value.

(b) If L̃P j is claimednot to be empty, letx⋆ beapproximateoptimal LP solution
and compute asafedual boundc⋆ with max{cTx : x∈ LPj} ≤ c⋆.

6. Bounding If c⋆ ≤ L, goto Step 3.

7. Primal bound
(a) If x⋆ is approximateLP solution and claimed to be feasible for FP-MIP, solve

LP relaxation max{cTx : x∈ LPj} exactly. If LPj is in fact empty, goto Step 3.
Otherwise, letx⋆ be anexactoptimal LP solution andc⋆ its objective value.

(b) If x⋆ is exactLP solution andtruly feasible for MIP:

i. If c⋆ > cMIP, setxMIP := x⋆, cMIP := c⋆, andL := c⋆.

ii. Goto Step 3.

8. Branching Choose indexi ∈ I with x⋆i /∈ Z.

(a) SplitPj in Q1 := Pj ∩{x : xi ≤ ⌊x⋆i ⌋}, Q2 := Pj ∩{x : xi ≥ ⌈x⋆i ⌉}.

(b) Split P̃j in Q̃1 := P̃j ∩{x : xi ≤ ⌊x⋆i ⌋}, Q̃2 := P̃j ∩{x : xi ≥ ⌈x⋆i ⌉} .

SetL := L ∪{(Q1,Q̃1),(Q2,Q̃2)} and goto Step 3.

relaxed in order to be safe. For the primal (lower) boundL, this meansL < cMIP if the
objective valuecMIP of the incumbent solutionxMIP is not inM.

Algorithm 1 identifies primal solutions by checking LP solutions for integrality.
This check, performed in Step 7, depends on whether the LP wasalready solved
exactly at the current node. If so, we test, without tolerances, the integrality of the
rational LP solution. Otherwise, we decide if it is worth solving the LP exactly. We
deem it worthy if the approximate LP solution is nearly integral. In this case, we solve
the LP exactly, using the corresponding basis to warm start the LP solver (hopefully

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 7

with few pivots and no need to increase the precision) and perform the exact integral-
ity test on the rational LP solution. In order to correctly report the optimal solution
found at the end of Step 3, the incumbent solution (that is, the best feasible MIP so-
lution found thus far) and its objective value are stored as rational numbers.

3 Safe Dual Bound Generation

This section describes several methods for computing validLP dual bounds in Step 5
of Alg. 1. The overall speed of the MIP solver will be influenced by several aspects
of the dual bounding strategy; how generally applicable themethod is, how quickly
the bounds can be computed and how strong the bounds are.

3.1 Exact LP Solutions

The most straightforward way to compute valid LP bounds is tosolve each node
LP relaxation exactly. This strategy is always applicable and produces the tight-
est possible bound. The fastest exact rational LP solver currently available is
QSOPT EX [7]. The strategy used by this solver can be summarized as follows: the
basis returned by a double-precision LP solver is tested foroptimality/feasibility by
symbolically computing the corresponding basic solution,if it is suboptimal or infea-
sible then additional simplex pivots are performed with an increased level of precision
and this process is repeated until the optimal basis is identified. When possible, the
extended precision pivots are warm started with the previously identified LP basis.
This method is considerably faster than using rational arithmetic exclusively; it was
observed to be only two to five times slower than inexact LP solvers on average over
a large test set [8].

In most cases, the double-precision LP run already producedan optimal basis,
so the overhead mainly came from computing and verifying theexact rational basic
solution. For some instances, this dominates the overall solution time. The costs as-
sociated with solving each basis systems exactly may be especially noticeable in the
MIP setting. Within a branch-and-bound framework the dual simplex algorithm can
be warm started with the final basis computed at the parent node, usually resulting in
a small number of dual simplex pivots.

If the basis determined by the double-precision subroutines of QSOPT EX is not
optimal, the additional increased precision simplex pivots and additional exact basic
solution computations significantly increase the solutiontime. It is important to note
that the solution time of the exact LP solver is influenced notonly by the dimension,
density, structure, etc., of the LP, but also by the number ofbits required to encode
the data and solution.

3.2 Basis Verification

This strategy avoids the extended precision simplex pivoting that can occur when
solving each node LP exactly, but sometimes results in more nodes being processed.

8 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Any exactly feasible dual solution provides a valid dual bound, even if it is not
optimal. Therefore, instead of solving each node LP exactly, valid dual bounds can
be determined by symbolically computing only the dual solution from a numerically
obtained LP basis. If the obtained dual solution is feasible, its objective value gives
a valid bound. If it is infeasible, then instead of performing the extra steps required
to identify the exact optimal solution, an infinite dual bound is returned. However,
if a finite bound was computed at the node’s parent, this boundcan be inherited,
strengthening an infinite dual bound from basis verification. Within the branch-and-
bound algorithm, infinite or weak dual bounds can lead to morebranching, but due to
the fixing of variables, branching often remediates numerical problems in the LP re-
laxations down in the tree.

3.3 Primal-Bound-Shift

Valid bounds can also be produced by correcting approximatedual solutions to be
exactly feasible. A special case occurs when all primal variables have finite upper
and lower bounds. The following technique was employed by Applegate et al. in
the CONCORDEsoftware package [6] and is described more generally for MIPs by
Neumaier and Shcherbina [35]. Consider a primal problem of the form max{cTx :
Ax≤ b,0 ≤ x ≤ u} with dual min{bTy+uTz : ATy+ z≥ c, y, z≥ 0}. The dual vari-
ablesz, which correspond to the primal variable bounds, appear as non-negative
slack variables in the dual constraints; they can be used to correct any errors ex-
isting in an approximate dual solution. Given an approximate dual solution(ỹ, z̃), an
exactly feasible dual solution(ŷ, ẑ) is constructed by setting ˆyi := max{0, ỹi} and
ẑi := max{0, (c−ATŷ)i}. This gives the valid dual boundbTŷ+uTẑ. This bound can
be computed using floating-point arithmetic with safe directed rounding to avoid
the symbolic computation of the dual feasible solution, butnote that this requires
the slave procedure to work on an FP-relaxation of the original problem (Step 1 of
Alg. 1).

The simplicity of computing this bound means that it is an excellent choice when
applicable. However, if some primal variable bounds are large or missing it may
produce weak or infinite bounds, depending on the feasibility of (ỹ, z̃).

3.4 Project-and-Shift

Correcting an approximate dual solution to be exactly feasible in the absence of
primal variable bounds is still possible. Consider a primalproblem of the form
max{cTx : Ax≤ b} with dual min{bTy : ATy = c, y ≥ 0}. An approximate dual so-
lution ỹ can be corrected to be feasible by projecting it into the affine hull of the dual
feasible region and then shifting it to satisfy all of the non-negativity constraints,
while maintaining feasibility of the equality constraints. These operations could in-
volve significant computation if performed on a single LP. However, under some
assumptions explained below, the most time consuming computations need only be
performed once, at the root node of the branch-and-bound tree, and reused for each
node bound computation.

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 9

To efficiently reuse information through the tree we assume thatAT has full row
rank, and that none of the dual variables are implied to be zero. In this case, an LU
factorization of a full rank subset of columnsSof AT is computed, this can be reused
at every subsequent node of the branch-and-bound tree to compute projections. Also,
a pointy∗ satisfyingATy= c, y≥ 0 andyi > 0 ∀ i ∈ S is computed at the root node,
and will remain dual feasible at all nodes in the branch-and-bound tree. If the root
node dual problem is as above, the dual problem at any node canbe represented as
min{b′Ty+ b′′Tz : ATy+A′′Tz= c, y, z≥ 0} whereb′T ≤ bT and the additional dual
variableszcorrespond to newly introduced primal variable bounds or cutting planes.

An approximately feasible node dual solution(ỹ, z̃) ≥ 0 can be corrected to
be exactly feasible by performing the following two steps. First, the violation of
the constraints is calculated exactly asr := c− ATỹ− A′′Tz̃ and a correction vec-
tor w satisfyingATw = r is computed in exact arithmetic using the pre-computed
LU factorization; addingw to the approximate solution projects it to satisfy the
equality constraints of the problem exactly. This solution(ỹ+w, z̃) might violate
the non-negativity constraints, but can only have negativecomponents in the set
S. Second, a convex combination of this projected point andy∗ is computed as
(ŷ, ẑ) := (1−λ)(ỹ+w, z̃)+λ (y∗, 0), such that(ŷ, ẑ) ≥ 0. The resulting point(ŷ, ẑ)
is then exactly feasible since it is a convex combination of two points satisfying all
of the equality constraints and gives a valid dual boundb′Tŷ+b′′Tẑ.

Thus, the root node computations involve solving an auxiliary LP exactly to ob-
tain the pointy∗ and symbolically LU factoring a matrix; the cost of each nodebound
computation is dominated by performing a back-solve of a pre-computed symbolic
LU factorization, which is often faster than solving a node LP exactly. This method
is more generally applicable than the primal-bound-shift method, but relies on some
conditions that are met by most, but not all, of the problems in our test set. Namely,
it is assumed thatAT has full row rank and that no dual variables are implied to be
zero. A detailed description and computational study of this algorithm can be found
in [43]. A related method is also described by Althaus and Dumitriu [5].

3.5 Combinations and Beyond

The ideal dual bounding method is generally applicable, produces tight bounds, and
computes them quickly. Each of the four methods described sofar represents some
trade-off between these conflicting characteristics. Theexact LPmethod is always ap-
plicable and produces the tightest possible bound, but is computationally expensive.
The primal-bound-shiftmethod computes valid bounds very quickly, but relies on
problem structure that may not always be present. Thebasis verificationandproject-
and-shiftmethods provide compromises in between, with respect to speed and gen-
erality. The relative performance of these dual bounding methods highly depends on
the (sub)problem structure, which may change throughout the tree. Therefore, a strat-
egy that combines and switches between the bounding techniques is the best choice
for an exact MIP solver intended to efficiently solve a broad class of problems.

In Sect. 3.6, we will evaluate the performance of each dual bounding method pre-
sented here and analyze in what situations which technique works best. In a final step,

10 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

we then study different strategies to automatically decidehow to compute safe dual
bounds for a given MIP instance. The central idea of the automatic selection strategy
is to apply fast primal-bound-shift as often as possible andif necessary employ an-
other method depending on the problem structure. In this connection, we will address
the question of whether this decision should be static or dynamic.

In the first version (“Auto”), Alg. 1 decides on the method dynamically in Step 5.
At each node primal-bound-shift is applied, and in case it produces an infinite bound
one of the other methods is applied. The drawbacks are that itallows for unnecessary
computations and that it requires an FP-relaxation for the slave procedure in order to
support primal-bound-shift. Alternatively, we can guess whether primal-bound-shift
will work (“ Auto-Static”). Meaning the dual bounding method is selected depending
on the problem structure at the beginning of Alg. 1, in Step 1,and remains fixed
throughout the tree. This allows us to work with FP-approximations whenever we do
not select primal-bound-shift. As we will see in the following section, dynamically
choosing the dual bounding method at each node achieves superior performance.

After establishing that the dynamic choice of the bounding method is a good
strategy, we consider additional ideas, giving two different variants of the “Auto”
setting. First, in the “Auto” setting, safe dual bounds are computed at every branch-
and-bound node. We will analyze (“Auto-Limited”), whether it is better to compute
them only at those nodes where it is required, i.e., if the unsafe dual bound coming
from the approximate LP solution would lead to pruning (using tolerances for the
comparison with the primal bound). Pruning decisions are critical for the correctness
of the final result and have to be safely verified, whereas correct dual bounds are not
required for subproblems which will be further processed bybranching.

Second, we experiment with interleaving our selection strategy “Auto” with ex-
act LP solves (“Auto-Ileaved”). A safe dual bound obtained by primal-bound-shift
can be weaker than the exact LP bound. Sometimes this difference slows down the
solution process unnecessarily strong because the solver keeps branching in subtrees
that would have been cut off by the exact LP bound. To eliminate some of these cases,
we compute the exact LP bound whenever the safe bound from primal-bound-shift is
very close to cutting off the node, but not close enough. Moreprecisely, if the bound
is within a tolerance smaller than or equal to the primal bound, but not without the
tolerance. The hope is that the exact LP bound is slightly stronger and then cuts off
the node. Computational results and additional discussionabout these ideas are given
in Section 3.6.3.

3.6 Computational Study

In this section, we investigate the performance of our exactMIP framework
employing the different safe dual bounding techniques discussed above: primal-
bound-shift (“BoundShift”), project-and-shift (“ProjectShift”), basis verification
(“VerifyBasis”), and exact LP solutions (“ExactLP”). We will first look at each
method at the root node, to study their behavior when appliedto a single LP, then
examine them within the branch-and-bound algorithm. At theend, we discuss and

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 11

test strategies to automatically switch between the most promising bounding tech-
niques.

As explained in Sect. 3.3, we have to create an FP-relaxationof the original
problem in Step 1 of Alg. 1 when we want to apply primal-bound-shift, whereas
we can use an FP-approximation for the other bounding methods. The discussed al-
gorithms were implemented into the branch-and-bound algorithm provided by the
MIP framework SCIP 1.2.0.8 [2,3,46], using best bound search with plunging for
node selection and first fractional variable branching. Alladditional features of SCIP,
like cutting planes, presolving, and primal heuristics, were disabled. For comparison,
we also consider the corresponding inexact version of SCIP,i.e., the pure branch-
and-bound algorithm with the same node selection strategy and branching rule as
in the exact setting (“Inexact”). To solve LPs approximately and exactly we call
CPLEX 12.2 [26] and QSOPT EX 2.5.5 [7], respectively. Rational computations are
based on the GMP library 4.3.1 [24]. In the following, we willrefer to the above ver-
sion numbers of the software packages if not otherwise stated. All benchmark runs
were conducted on 2.5 GHz Intel Xeon E5420 CPUs with 4 cores and 16 GB RAM
each. To maintain accurate results only one computation wasrun at the same time.
We imposed a time limit of 24 hours and a memory limit of 13 GB. The timings
used to measure computation times are always rounded up to one second if they are
smaller. We used the same set-up for the experiments in Sect.4, 5, and 6.

Our test set contains all instances of the MIPLIB 3.0 [10] and MIPLIB 2003 [4]
libraries and from the Mittelmann collections [33] that canbe solved within 2 hours
by the inexact branch-and-bound version of SCIP (“Inexact”). This gives a test suite
of 57 MIP instances (see Table 2), which we calleasy test set. Note that we also
analyzed the performance on the remaining, harder, instances of the libraries. The
conclusions drawn here, on the smaller suite, were confirmedby these results. At
the root node, the individual dual bounding methods were applicable for a similar
percentage of instances and also computed bounds of good quality. The overall slow-
down factor of the exact solver (“Auto-Ileaved” versus “Inexact”) can be expected to
be in the same order as for the easy test set. We drew this conclusion by looking at
the number of branch-and-bound nodes which both solvers hadprocessed when they
hit a certain time limit (but had not solved the instance to optimality). On the easy
test set, as we will see later, the exact and the inexact solver require a similar number
of branch-and-bound nodes to solve an instance to optimality. This is because the
considered benchmarking libraries contain mainly instances that do not cause serious
numerical difficulties, and therefore, we expect the numberof nodes processed within
the time limit to be a good indicator of how much slower the exact code will be.

The easy test set will also be used in Sect. 4 and 5 for studyingdifferent branch-
ing rules and checking the accuracy of the inexact version ofSCIP, respectively. In
Sect. 6, we will analyze our exact solver on numerically moredifficult instances.

3.6.1 Root Node Performance

We start by evaluating the root node behavior of the dual bounding methods. Our per-
formance measures are: time overhead and bound quality. Theperformance profile,
see [21], in Fig. 1 visualizes the relative overhead times for the safe dual bounding

12 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Setting Zero S M L ∞ DB [s]

BoundShift 13 26 2 0 16 1.0
ProjectShift 19 31 5 0 2 2.8
VerifyBasis 57 0 0 0 0 1.3
ExactLP 57 — — — — 1.4

Auto 20 35 2 0 0 1.3
Auto-Static 21 34 2 0 0 1.3
Auto-Ileaved 20 35 2 0 0 1.3

Table 1 Safe dual bounding at root node
on easy test set: Relative difference to
“ExactLP” dual bound and additional com-
putation time “DB” in geometric mean

40

45

50

55

1 10 100 1000

N
um

be
r

of
in

st
an

ce
s

No. of times slower than fastest

BoundShift

•

•

ProjectShift

N
N
N

N
N
N
N

N
N
N
N
N

N
N
N
N

N
N

N

N

VerifyBasis

♦
♦

♦
♦

♦
♦
♦
♦

♦

♦

ExactLP

∗
∗

∗
∗

∗
∗
∗
∗

∗

∗

Auto-Ileaved

H
H
H
H

H

Figure 1 Comparison of safe dual bounding times “DB” at root node oneasy test set

methods. For each of them, it plots the number of instances for which the safe dual
bounding step was performed within a given factor of the bounding time of the fastest
method. Table 1 presents the geometric mean of these additional safe dual bounding
times in seconds (“DB”) and states the number of instances for which a certain dual
bound quality was achieved.

This quality is given by the relative difference between thecomputed safe dual
boundc⋆ and the exact LP valuec⋆⋆ := max{cTx : x ∈ LPj}. However, we actually
compare the FP-representable upper approximations of bothvalues, as used in Alg. 1,
and define the relative difference asd := (c⋆ − c⋆⋆)/max{1, |c⋆|, |c⋆⋆|}. The corre-
sponding columns in Table 1 are: “Zero” difference ford = 0, “S(mall)” difference
for d ∈ (0,10−9], “M(edium)” difference ford ∈ (10−9,10−3], and “L(arge)” differ-
ence ford ∈ (10−3,∞). Column “∞” counts the worst case behavior, i.e., infinite dual
bounds.

We observe that basis verification has a similar behavior as exact LP for the root
node. Still, as we will see in the next section, it gives an improvement over the exact
LP solver when expensive basis repair steps are required to find the exact LP solution
at certain branch-and-bound nodes.

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 13

As expected, primal-bound-shift is the fastest method. However, it produces in-
finite dual bounds on 16 instances in contrast to only two fails1 for project-and-shift
and no fails for basis verification. This is, the bases obtained by CPLEX are often
dual feasible and even optimal and project-and-shift meetsits requirements most of
the time. Still, the finite bounds provided by primal-bound-shift are of very good
quality; most of them fall into the “Zero” and “S(mall)” categories. Thus, when
primal-bound-shift works we expect to obtain strong boundsand whenever it fails
we assume basis verification or project-and-shift to be applicable.

Where basis verification is in most cases only up to 10 times slower than primal-
bound-shift, project-and-shift is up to 100 times slower atthe root node because of
the expensive initial set-up step. In the next section, we will see that the overhead
incurred by the set-up step of project-and-shift often paysoff when it is applied within
the entire branch-and-bound tree.

3.6.2 Overall Performance

We will now analyze the effect of the dual bound methods on theoverall performance
of the exact MIP solver and compare it with the inexact branch-and-bound version of
SCIP (“Inexact”). Table 3 reports the number of instances that were solved within
the imposed limits (Column “slv”), for each setting. On 37 instances all settings suc-
ceeded. For this group, we present in Table 3, the number of branch-and-bound nodes
“Nodes”, the solution time “Time” in seconds, and the additional time spent in the
safe dual bounding step “DB” in seconds, all in geometric mean for each method.
In addition, Fig. 2 gives a performance profile comparing thesolution times. For a
setting where an instance had a timeout, it is reported with an infinite ratio to the
fastest setting. Thus, the intersection points at the rightborder of the graphic reflect
the “slv” column. “Nodes” and “Time” for the individual instances are reported in
Table 2. When a dual bounding method leads to a solving time that is within 5% of
the fastest run, the “Time” entry is put in bold. Details for the inexact run can be
found in Table 5 (“Inexact-Firstfrac”). Note that in the next section, “Inexact” will
be referred to as “Inexact-Firstfrac” in order to emphasis the applied branching rule.

The observations made for the root node carry forward to the application in the
branch-and-bound algorithm. Primal-bound-shift leads tothe fastest node process-
ing. Basis verification has a slightly better performance than solving LPs exactly.
However, basis verification is often outperformed by project-and-shift.

Concerning the quality of the safe dual bounds, project-and-shift, basis verifi-
cation, and exact LP solves perform equally well, which is reflected in a similar
(e.g.,bell3a, misc07, andrentacar), or even identical (e.g.,acc-0, nug08, and
vpm1), number of branch-and-bound nodes, see Table 2. Minor nodecount varia-
tions between these exact versions can be explained by slightly different safe dual
bounds leading to different node selection decisions. Thiscan, for example, change
the point in time when nodes can be cut off due to a new primal solution. It also
explains why weaker dual bounds occasionally result in lower overall node counts

1 Project-and-shift fails to produce finite bounds on two instances,swath1 andswath2. The conditions
necessary for its applicability within the tree (see Sect. 3.4) were not satisfied by these instances.

14 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Table 2 Overall performance with first fractional variable branching and different safe dual bounding
methods oneasy test set. Detailed results. Instances missing bounds on variables are marked by “×”.
Solving times within 5% of the fastest setting are put in bold

BoundShift ProjectShift VerifyBasis ExactLP
Example Nodes Time [s] Nodes Time [s] Nodes Time [s] Nodes Time [s]

30:70:45:0 95:100 >948 382 >86400.0 >250 119 >86400.0 190 47.6 190 76.9
acc-0 52 2.5 52 3.3 52 3.5 52 4.1
acc-1 3 224 269.3 3 224 337.1 3 224 393.8 3 224 433.0
acc-2 241 39.7 241 45.8 241 51.9 241 56.5
air03 21 1.1 21 30.1 21 3.7 21 3.4
air05 94 281 3795.1 94 269 15474.3 94 283 14680.2 94 283 19348.7

×bc1 237 946 22829.1 >225 758 >86400.0 >75 465 >86400.0 >52 189 >86400.0
×bell3a >218 056 821>86400.0 362 609 564.4 362 615 3208.2 362 615 3674.9
×bell5 >378 835 894>86400.0 408 929 480.0 408 992 3129.9 408 992 3671.0
×bienst1 96 695 836.2 42 018 296.0 40 898 844.8 40 898 811.1
×bienst2 1 137 212 7470.6 447 178 3768.6 447 177 8908.3 447 177 8613.2
×blend2 >87 322 668>86400.0 44 988 207.0 44 992 471.1 44 992 583.5
×dano33 >11 926 >86400.0 40 121.2 40 387.9 40 401.8
×dano34 >12 137 >86400.0 193 415.8 193 1769.7 193 1864.3
×dano35 >13 552 >86400.0 4 722 8033.9 4 720 43126.0 4 718 62674.6
×dcmulti >33 470 968>86400.0 20 133 115.6 20 133 159.7 20 133 215.3
×egout 121 777 24.4 60 871 121.5 60 871 331.5 60 871 359.6

eilD76 236 181 2056.5 236 305 14369.9 236 305 12219.5 236 303 16786.7
enigma 128 282 20.9 128 058 162.7 128 058 449.6 128 058 353.1

×flugpl 4 922 1.0 3 519 1.0 3 519 1.1 3 519 1.6
×gen 43 265 38.1 34 100 397.0 34 100 490.0 34 100 613.4
×gesa3 >19 356 446>86400.0 128 210 2645.3 128 210 3463.2 128 210 4696.8
×gesa3o >28 503 643>86400.0 178 437 3366.9 178 437 4408.4 178 437 5860.4

irp 111 775 6057.0 116 177 33107.1 116 177 28149.7 116 177 43510.8
×khb05250 6 606 3.0 6 606 27.7 6 606 39.5 6 606 43.5

l152lav 11 934 28.0 11 933 332.3 11 934 228.0 11 934 279.1
lseu 781 943 88.2 795 963 730.1 795 963 717.0 795 963 865.6

×markshare11 >207 456 702>86400.0>126 148 808>86400.0>11 372 254>86400.0>10 278 529>86400.0
×markshare40 7 205 565 575.2 3 826 128 1551.6 3 826 114 23191.5 3 826 096 22074.2

mas76 7 414 402 1804.6 7 568 599 82284.8 >6 281 758 >86400.0 >3 593 826 >86400.0
mas284 1 709 343 1095.2 1 894 754 72074.8 1 709 652 34002.6 1 709 652 47618.4

×misc03 1 561 1.0 1 561 4.0 1 559 3.9 1 559 4.7
×misc07 368 164 369.6 368 179 2550.8 367 676 3127.2 367 676 3564.5

mod008 57 762 8.9 59 211 283.7 59 211 443.4 59 211 587.5
mod010 93 730 200.2 93 732 2911.3 93 730 1972.8 93 730 2682.4

×mod011 >1 056 416 >86400.0 421 651 67906.5 421 65156640.5 421 651 80443.6
neos5 49 585 878 13715.0 >28 412 949>86400.0 26 371 494 59144.2 26 371 494 63644.7
neos8 25 091 2228.8 24 928 8593.2 25 091 68162.0 25 091 72125.8

×neos11 46 712 3331.2 32 006 2714.3 30 020 2941.3 30 020 3059.2
×neos21 830 078 5764.9 830 716 15662.0 818 609 21096.9 818 611 23479.2

neos897005 86 339.3 86 706.1 86 373.0 86 392.8
nug08 143 14.6 143 19.0 143 39.0 143 42.3
nw04 10 826 1402.4 10 826 16235.5 10 826 12127.2 10 826 12097.7
p0033 2 664 1.0 2 670 1.0 2 670 1.1 2 670 1.3
p0201 5 746 2.8 5 788 19.5 5 780 16.1 5 780 30.5

×pk1 >425 303 108>86400.0 1 793 664 6509.8 1 793 663 19795.5 1 793 656 21516.5
qap10 246 548.9 246 573.9 246 979.0 246 2120.3

×qnet1o 981 487 1421.9 730 464 12195.0 731 031 16823.3 731 031 19706.4
×ran13x13 >383 471 711>86400.0 >26 422 361>86400.0>28 943 888>86400.0>27 372 116>86400.0
×rentacar 321 915 20848.9 165 70.3 156 31.0 156 47.3

rgn 10 206 9.5 10 249 28.9 10 249 94.2 10 219 145.2
stein27 4 031 1.0 4 031 2.8 4 031 4.4 4 031 4.9
stein45 58 333 31.2 58 329 97.4 58 333 167.0 58 333 182.0

×swath1 1 890 605 48739.2 >1 677 398 >86400.0 560 996 44176.7 560 996 69978.7
×swath2 2 707 605 65573.1 >1 664 965 >86400.0 >1 099 065 >86400.0 >716 964 >86400.0

vpm1 7 773 158 1962.9 7 773 158 25645.6 7 773 158 18726.1 7 773 158 20405.2
vpm2 27 383 880 8652.6 >21 823 235>86400.0>19 267 535>86400.0>17 032 855>86400.0

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 15

Geometric mean for instances
solved by all settings (37)

Setting slv Nodes Time [s] DB [s]

Inexact 57 18 030 59.4 —
BoundShift 43 24 994 110.4 13.9
ProjectShift 49 18 206 369.3 238.1
VerifyBasis 51 18 078 461.8 329.8
ExactLP 51 18 076 550.7 419.0
Auto 54 18 276 92.6 17.5
Auto-Static 53 18 276 100.2 19.8
Auto-Ileaved 55 18 226 91.4 18.4
Auto-Limited 48 22 035 89.9 12.0

Table 3 Summary of overall performance
with first fractional variable branching on
easy test set. “slv” is number of instances
solved, “DB” is safe dual bounding time

5

10

15

20

25

30

35

40

45

50

55

1 10 100 1000

N
um

be
r

of
in

st
an

ce
s

No. of times slower than fastest

Inexact

��

�

BoundShift

••
••
••
••
••
••
••
••
••
••
••
••
••

••
• ••

• • • • • • •

•

ProjectShift

NN
NN
NN
NN

NNN
NN
NN
NN
NN
N NN

NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN
NN N N N

N

VerifyBasis

♦♦
♦♦
♦♦
♦♦

♦♦♦
♦♦
♦♦
♦ ♦♦

♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦♦

♦♦
♦♦
♦♦
♦♦

♦♦
♦♦
♦♦
♦♦

♦

♦

ExactLP

∗ ∗
∗∗
∗∗
∗ ∗∗

∗∗
∗∗
∗∗
∗∗
∗ ∗∗

∗∗
∗∗
∗∗
∗∗
∗∗
∗ ∗∗

∗∗
∗∗
∗ ∗∗

∗∗
∗∗

∗∗
∗∗
∗∗
∗

∗

Auto-IleavedHH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HHH

HH
HH
HH

H HHH
HH
HH
HH
HH

HH
HH
H

H

Figure 2 Comparison of overall solving times “Time” on easy test set. Branching rule is first fractional
variable branching

(e.g., “VerifyBasis” can solveneos21 using fewer nodes than “ExactLP”). On the
instances, where no bounds on the variables are missing, i.e., where primal-bound-
shift will always work, the node count is often even similar for all four dual bounding
methods. However, the variation is slightly more significant for primal-bound-shift,
because an FP-relaxation of the original problem is set up inStep 1 of Alg. 1 instead
of an FP-approximation; relative to the others, this may produce different approxi-
mate LP solutions. Sometimes this even leads to fewer nodes for primal-bound-shift
(e.g.,rgn). Table 2 also gives an example (khb05250) for an instance where primal-
bound-shift works even though bounds are missing on some variables; these bounds
were not required in the correction step.

Concerning the overall solution time, we observe that, whenapplicable, primal-
bound-shift computes valid dual bounds with very little overhead. For the instances it
solved we usually experience a slow-down of at most 2, relative to the inexact branch-
and-bound solver. The few large slow-down factors of up to 10can be explained by a

16 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

node increase due to a small number of missing variable bounds and by expensive ex-
act LP calls for computing primal bounds. The one extreme slow-down factor comes
from rentacar, which is solved by pure enumeration; primal-bound-shift produces
infinite bounds at all nodes. However, due to its limited applicability it solved only
43 instances within the imposed limits.

In contrast, project-and-shift solves 49 instances. The dual bound quality was
strong enough such that instances could be solved without requiring a significant
increase in the number of nodes processed, relative to the “ExactLP” strategy. In
the previous section we observed a large overhead required at the root node by this
method, making it impractical for computing valid bounds ona single LP; however,
we observe that amortized over the entire branch-and-boundtree, the resulting solu-
tion time is competitive. In mean, it is only 6 times slower than the inexact code. In
this fashion, most of the instances were solved within 20 times the time used by the
inexact code.

If we compare project-and-shift with basis verification (Table 2 and Fig. 2) we
see a similar and often better performance for project-and-shift. Still, on some in-
stances basis verification works better. For example, it solves two more instances of
our test set. To figure out when we should choose basis verification instead of project-
and-shift, i.e., when (the setup step of) project-and-shift is too expensive, we tested
different, easy to compute, problem characteristics. Since the setup costs of project-
and-shift are dominated by an exact LP solve and a symbolic LUfactorization (see
Sect. 3.4), we tested criteria in connection with the constraint matrix: dimension of
the matrix, ratio between number of rows and columns, percentage of nearly par-
allel rows (sometimes introduced to build an FP-relaxation), number of non-zeros,
percentage of integral non-zeros, ratio between largest and smallest absolute value.
Another idea was to estimate whether project-and-shift will be called often enough
such that the setup step pays off. Here, we looked at the percentage of variables with
missing bounds. The best results were obtained with the number of non-zeros in the
constraint matrix. In the automatic dual bound selection strategies, discussed below,
we prefer project-and-shift as long as the matrix has at most10,000 non-zeros.

Only one instance,markshare1 1, could not be solved within the imposed limits
by any of the four exact versions. In contrast to the other instances, the node count
for markshare1 1 significantly increases with the exact solvers, see Tables 2and 5.
The reason is that in the course of the branch-and-bound processes some of the nearly
integral approximate LP solutions do not correspond to integral exact LP solutions,
which causes many additional branchings; in particular, this holds for the final primal
solution found by the inexact solver.

3.6.3 Combinations

We already gave some remarks concerning a strategy that automatically chooses a
dual bounding method. Another important observation for this purpose is that re-
placing FP-approximations by FP-relaxations does not affect the performance much:
on our test set, running project-and-shift on an FP-relaxation gave similar results
to running it on an FP-approximation. Therefore, we decidedto always set up an

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 17

FP-relaxation in Step 1 of Alg. 1. This way, we are allowed to apply primal-bound-
shift at any node we want to.

The automatic decision process used in the “Auto” run works as follows. At ev-
ery node, we first test whether primal-bound-shift producesa finite bound. If not,
we choose project-and-shift or basis verification depending on the constraint matrix
as explained above. The root node results for the combined versions are presented
in Table 1 and Fig. 1; the overall performance results can be found in Table 3 and
Fig. 2. Note that we excluded “Auto-Limited” from Table 1 as it never computed
safe finite bounds at the root node and that we only included the best auto setting
in the performance profiles as their graphs look very similar. Detailed results for the
inexact run and the best auto setting are given in Table 5. Notice that in this table for
reasons of clarity, “Inexact” and “Auto-Ileaved” are called “Inexact-Firstfrac” and
“Exact-Firstfrac”, respectively.

The experiments show that “Auto” combines the advantages of all dual bounding
methods. We can solve all 43 instances that primal-bound-shift solved as well as 11
additional ones by automatically switching to other dual bounding methods at the
nodes. In Sect. 3.5, we discussed three possible improvements for the automatic dual
bound selection procedure. The first one, to only guess whether primal-bound-shift
will work, is implemented in the test run “Auto-Static”. The guess is static, i.e.,
does not change throughout the tree; we skip primal-bound-shift if more than 20%
of the problem variables have lower or upper bounds with absolute value larger than
106. Comparing both automatic settings shows that it is no problem to actually test at
each node whether primal-bound-shift works, and it even leads to a slightly improved
performance.

The second idea was to interleave the strategy with exact LP calls (“Auto-
Ileaved”). This strategy tries to avoid situations when branching is applied repeatedly
on nodes that could be safely cut off if their LPs were solved exactly, but not if a
weaker bound was computed. Examples are nodes where the exact LP dual bound
is equal to the best known primal bound. This situation does not occur on many in-
stances in our test set, but when it does, the interleaving strategy is helpful. We solve
one more instance (30:70:4 5:0 95:100) to optimality without introducing a sig-
nificant time overhead on the other instances.

The third extension was to only compute bounds safely at nodes where the (un-
safe) bound coming from the approximate dual solution wouldlead to cutting off the
node. Looking at the overall behavior for the correspondingtest run, “Auto-Limited”,
it is not clear whether this is a good idea in general. It solved fewer instances than
the other automatic settings and processed more nodes. On harder instances the node
count at timeout was higher than the other methods, i.e., thenode processing is much
faster on average. However, we cannot draw strong conclusions about the quality of
this approach on harder instances, as in this setting the exact primal-dual-gap does not
improve steadily. Moreover, one advantage of computing safe dual bounds at more
nodes of the branch-and-bound tree is that these safe boundsare inherited by a node’s
children. Therefore, if safe bounds were computed previously, the discovery of an im-
proved primal bound may allow immediate pruning of many unprocessed nodes. In
a similar situation, the setting “Auto-Limited” may incur extra cost computing safe
bounds at each of these nodes individually.

18 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

4 Branching Rules

So far we have introduced a branch-and-bound algorithm for solving MIPs exactly
and developed an advanced strategy for computing the dual bounds safely in this
framework (“Auto-Ileaved”, which we refer to as “Exact-Firstfrac” in the following).
Here we will improve the branching step of the current implementation. Choosing
which variable to branch on is crucial for MIP solvers. The experiments in [2] (using
SCIP version 0.90f) showed that replacing the default branching rule in SCIP by
other less sophisticated ones increases the running time bya factor of up to 4. For
comparison, disabling cutting plane separation doubles the solution time.

The inexact version of SCIP supports various branching rules. We tested the fol-
lowing ones in the exact MIP setting, listing them in increasing order of their perfor-
mance in the inexact full version of SCIP as evaluated by Achterberg in [2].

– “Exact-Leastinf”: Least infeasible branching
– “Exact-Firstfrac”: First fractional branching
– “Exact-Mostinf”: Most infeasible branching
– “Exact-Fullstrong”: Full strong branching
– “Exact-Pseudocost”: Pseudocost branching
– “Exact-Reliability”: Reliability branching

Least infeasibleand most infeasible branchingconsider the fractional parts of the
integer variables in the LP solution. By solving the LP relaxation of the potential
subproblems for all branching candidates,full strong branchingchooses the variable
which leads to the best dual bound improvement.Pseudocost branchingtries to es-
timate this improvement by analyzing the dual bound gains achieved by previous
branchings.Reliability branchinguses strong branching only on variables with unre-
liable pseudocosts, i.e., with a limited branching history. First fractional branching,
the rule used so far in our implementation, simply decides tobranch on the first in-
teger variable (w.r.t. variable index) with fractional LP solution value. SCIP applies
this scheme when no special branching rule is implemented. It was not tested in [2],
but the performance is in the range of most infeasible and least infeasible branching.

When selecting the branching variable in the exact MIP setting, exact branch-
ing score calculation is not required to obtain a correct solution. In particular, the
strong branching LPs do not need to be solved exactly. The only restriction is that
all other conclusions drawn from strong branching LPs are ignored; they are not safe
anymore if the LPs are only solved by an inexact LP solver. These additional con-
clusions include prunable subproblem detection (if we find abranching candidate for
which both strong branching LPs are infeasible), domain reduction (of all variables
for which one of the strong branching LPs is infeasible), anddual bound improve-
ment (the weaker objective function value of the two strong branching LP solutions
of a variable provides a valid dual bound for the current subtree).

For full strong branching, this significantly reduces its potential. Table 4 sum-
marizes, alongside others, the results for running the inexact branch-and-bound al-
gorithm of SCIP without additional conclusions from strongbranching LP solutions
(“ Inexact-Fullstrong”) and with them (“Inexact-Fullstrong+”). Supporting this step,
as done in standard floating-point MIP solvers, speeds up thebranch-and-bound pro-

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 19

Geometric mean
for instances solved
by all settings (47)

Setting slv Nodes Time [s] DB [s]

Exact-Leastinf 49 48 211 324.3 84.7
Exact-Firstfrac 55 27 306 193.2 56.7
Exact-Fullstrong 55 3 146 168.2 12.9
Exact-Mostinf 54 11 935 98.4 34.5
Exact-Pseudocost 56 6 745 53.4 20.0
Exact-Reliability 56 3 394 43.8 13.0

Inexact-Firstfrac 57 26 686 77.0 —
Inexact-Reliability 57 3 458 19.8 —
Inexact-Reliability+ 57 2 611 21.5 —
Inexact-Fullstrong 57 2 941 104.6 —
Inexact-Fullstrong+ 57 789 58.6 —

Table 4 Summary of performance for different
branching rules oneasy test set. Exact solver uses
“Auto-Ileaved” for safe dual bounding. “slv” is
number of instances solved, “DB” is safe dual
bounding time

cess by a factor of 1.8. The node count is reduced by a factor of 3.7. So the positive
impact of full strong branching is not only due to good branching decisions based on
additional LP solves; to a certain extent it is also achievedby drawing further conclu-
sions from these strong branching LPs, which includes variable fixings, domain re-
ductions and node cutoffs. Regarding the node count improvement, one should keep
in mind that if full strong branching “creates” subproblemsand detects them to be
prunable, they are not counted as branch-and-bound nodes. Performing the same ex-
periment with reliability branching, i.e., if strong branching is only used in case of
unreliable pseudocosts, we observe that the additional conclusions have only a very
small impact (“Inexact-Reliablity” versus “Inexact-Reliablity+” in Table 4).

For the exact MIP setting, the impact of each tested branching rule is summa-
rized in Table 4. The ranking is similar to what was experienced for the floating-point
version of SCIP in [2]; except for full strong branching which performs in our tests
worse than most infeasible branching for the reasons explained above. The best re-
sults were obtained with reliability branching.

Tables 4 and 5 compare the performance of first fractional branching and re-
liability branching in the inexact branch-and-bound version of SCIP (“Inexact-
Firstfrac” versus “Inexact-Reliablity”) and in the exact version (“Exact-Firstfrac”
versus “Exact-Reliability”). In both settings, the impact of reliability branching is
of the same range. In mean, the running time with this rule improves by a factor
of 3.9 for the inexact and 4.4 for the exact code. In addition, Fig. 3 visualizes the
changes in running time and in the number of branch-and-bound nodes between the
inexact and the exact code when both apply reliability branching. The performance
degradation is similar to what was experienced with first fractional branching in the
previous section (see Fig. 2 and Table 3). In geometric mean,the exact version is
only 2.2 times slower than the inexact one. However, with reliability branching the
branch-and-bound tree diverges more between the inexact and the exact solver; in
Table 5 we observe that the node count differs more with reliability branching than
with first fractional branching. In the extreme, both solvers need the same number of
branch-and-bound nodes with first fractional branching, while having different node
counts with reliability branching (e.g.,air05, egout, andvpm1). The reason is that

20 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Table 5 Overall performance of exact and inexact solver with first fractional and reliability branching on
easy test set. Detailed results. Exact solver uses “Auto-Ileaved” for safe dual bounding. Instances missing
bounds on variables are marked by “×”. Solving times within 5% of the fastest setting are put in bold

Inexact-Firstfrac Exact-Firstfrac Inexact-Reliability Exact-Reliability
Example Nodes Time [s] Nodes Time [s] Nodes Time [s] Nodes Time [s]

30:70:45:0 95:100 190 14.0 379 101.4 155 75.7 309 153.1
acc-0 52 2.5 52 2.5 56 14.1 56 14.2
acc-1 3 224 268.7 3 224 269.5 51 30.4 51 30.5
acc-2 241 39.6 241 39.6 79 41.7 79 41.8
air03 21 1.0 21 1.1 16 1.6 16 2.7
air05 94 281 3537.6 94 281 3792.4 977 60.3 653 45.7

× bc1 237 946 5923.5 237 946 18875.4 135 3763980.8 134 702 13895.1
× bell3a 362 615 84.5 354 952 485.7 59 610 13.0 56 305 80.6
× bell5 408 992 41.2 417 113 373.8 76 897 9.2 413 159 377.8
× bienst1 40 904 91.9 41 103 233.9 20 426 45.6 12 214 64.2
× bienst2 445 383 1481.1 447 178 3218.2 94 669220.6 96 100 682.0
× blend2 44 589 8.1 45 305 160.5 8 425 2.1 8 719 29.0
× dano33 40 32.2 40 390.3 33 75.7 33 395.5
× dano34 193 126.0 193 1784.9 55 106.9 52 611.9
× dano35 4 718 2663.2 4 732 42552.8 223 215.7 231 2331.0
× dcmulti 20 133 8.5 20 133 89.7 2 142 1.3 2 224 11.5
× egout 60 871 7.4 60 871 57.6 8 337 1.1 8 832 7.4

eilD76 236 305 1629.2 236 181 2065.5 12 884149.0 15 087 216.3
enigma 128 058 17.3 128 282 21.6 465 1.0 465 1.0

× flugpl 3 519 1.0 3 519 1.0 4 203 1.0 4 302 1.0
× gen 34 100 22.5 34 649 73.6 549 1.0 770 5.9
× gesa3 128 210 143.0 128 210 2753.0 6 000 7.4 6 049 120.1
× gesa3o 178 437 168.4 178 437 3562.8 5 705 7.1 5 999 111.2

irp 116 177 2035.1 111 775 5886.8 136 2721888.1 11 758 2174.3
× khb05250 6 606 1.9 6 606 2.8 2 816 1.0 2 816 1.3

l152lav 11 934 23.4 11 934 28.0 921 5.5 1 140 6.6
lseu 781 943 65.3 781 943 88.7 34 937 3.2 34 937 4.4

×markshare11 2 404 813 160.0 >305 281 790 >86400.0 2 282 316 157.9 >276 279 298 >86400.0
×markshare40 3 826 122 236.9 3 826 122 662.2 1 314 927 84.5 1 297 895 239.0

mas76 7 415 279 1067.0 7 414 402 1845.9 1 012 655 155.3 593 334140.5
mas284 1 709 652 466.5 1 709 343 1096.0 30 378 11.2 29 892 22.3

×misc03 1 559 1.0 1 559 1.0 810 1.0 788 1.0
×misc07 367 676 293.9 367 676 375.9 27 222 25.5 33 885 40.1

mod008 57 768 5.9 57 762 8.8 14 743 2.0 14 743 3.0
mod010 93 730 158.9 93 730 200.2 628 4.2 627 4.7

×mod011 421 651 7060.8 421 653 62387.6 45 586796.7 52 061 9021.8
neos5 26 371 297 5899.1 26 373 009 16627.7 2 261 391519.9 5 527 463 3770.4
neos8 25 095 2228.8 25 091 2567.9 1 374371.6 4 866 977.0

× neos11 30 020 1875.8 30 034 2460.7 15 035 1271.6 10 7851167.5
× neos21 818 609 5528.5 818 613 5774.6 10 458133.1 9 810 132.9

neos897005 86 334.9 86 333.1 11 359.5 11 350.9
nug08 143 13.9 143 14.6 11 23.4 11 23.4
nw04 10 826 1031.7 10 826 1411.5 766 213.6 766 260.2
p0033 2 664 1.0 2 664 1.0 1 388 1.0 1 388 1.0
p0201 5 746 2.3 5 746 2.8 379 1.0 379 1.0

× pk1 1 793 663 329.8 1 793 663 5577.8 609 529126.5 609 529 1965.8
qap10 246 538.8 246 548.1 13 143.2 13 143.8

× qnet1o 731 031 812.2 981 086 1419.5 1 715 3.9 1 467 5.0
× ran13x13 27 604 305 5188.0>26 208 179 >86400.0 795 936 146.7 795 961 2538.3
× rentacar 155 6.6 169 30.5 61 8.9 61 19.4

rgn 9 877 1.3 10 202 11.5 4 019 1.0 5 103 12.5
stein27 4 031 1.0 4 031 1.0 4 345 1.0 4 345 1.0
stein45 58 333 28.6 58 333 31.2 54 972 27.2 54 961 29.9

× swath1 560 996 1874.1 560 996 18367.0 17 696 70.0 17 694 572.0
× swath2 1 156 144 3955.1 1 146 891 32248.0 20 789 82.4 20 324 497.7

vpm1 7 773 158 1446.2 7 773 158 1983.7 324 354 60.5 341 834 86.4
vpm2 27 384 657 6736.8 27 383 880 8753.5 955 054234.7 959 465 307.8

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 21

(a)

5
10
15
20
25
30
35
40
45
50
55

1 10 100

N
um

be
r

of
in

st
an

ce
s

No. of times slower than fastest

Inexact-Reliablity

��
��
��

�

Exact-Reliablity
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
� �

�

(b)

5
10
15
20
25
30
35
40
45
50
55

1 10 100

N
um

be
r

of
in

st
an

ce
s

No. of times more nodes than solver with fewest

Inexact-Reliablity

��
��
��
��
��
��
��
��
� �

�

Exact-Reliablity

��
��
��
��
��
��
��
��
��

�� � �

�

Figure 3 Comparison of best exact solver and inexact counterpart oneasy test set. a Performance profile
for solving time “Time”. b Performance profile for branch-and-bound nodes “Nodes”

the sophisticated strategy of reliability branching is more sensitive to small changes,
for example, in the dual bounds and the number of LP iterations (see [2] for details
on the reliability branching algorithm). To summarize, theexact code benefits from
better branching rules in the same way as the inexact one.

In addition to standard branching strategies, one that aimsat making the fast safe
dual bounding method primal-bound-shift (see Sect. 3.3) work more often would be
interesting. If a missing bound constraint is necessary to repair the approximate dual
solution by primal-bound-shift, the method will fail and weapply one of the more
expensive dual bounding methods at this branch-and-bound node. Branching on such
variables would introduce a missing bound in one of the created subproblems and this
way could increase the chance of primal-bound-shift to be applicable in this subtree.
On the easy test set, 29 of the 57 instances contain variableswith infinite lower or
upper bounds. They are marked by a “×” in Table 5. However, examining the problem
characteristics we noticed that all missing bounds were on continuous variables only.
That is, we are not able to introduce the required bounds through branching decisions;
branching is only performed on integer variables. On numerically difficult instances,
considered in the next section, we observed a similar situation. In Table 11, 28 out
of 50 instances had infinite bounds, but only in a few cases this involved integer
variables (dfn6 load, dfn6fp load, dfn6f cost, anddfn6fp cost).

5 How Accurate are Current MIP Solvers?

On the easy test set, with reliability branching, we are ableto solve all but one in-
stances exactly (markshare1 1). Thus, having exact objective function values for
nearly all instances at hand, we now want to analyze how accurate the floating-point
version of SCIP is. In the inexact setting, errors in the branch-and-bound process can
be introduced at several different places: while reading inthe instance, in the bound-
ing step and in the feasibility test (because of the FP-arithmetic and the consequent

22 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

usage of tolerances), and because of inaccurate LP solutions. See [29,42] for further
discussion regarding possible sources and types of errors that might be encountered.

We considered our best exact branch-and-bound version (“Exact-Reliability”) and
its inexact counterpart (“Inexact-Reliablity”) and present in Table 6 the “Difference”
between the objective function values returned by the exactand the inexact run
(“Exact Objval” 2 and “Approx Objval”).

We mark cases where an instance was not solved to optimality within the limits
(see Table 5) by a “—” and also use “—” in the “Difference” column then. Otherwise,
the exact absolute difference is computed. If it is non-zero, the closest FP-number is
displayed.

For the majority of the instances, the objective values are identical. On 12 in-
stances, the inexact branch-and-bound solver reports results that differ from the ex-
act objective values, but the differences are not significant. This indicates that no
dramatic mistakes were made by the FP branch-and-bound solver. But this is not
surprising as the instances come from standard MIP libraries, for which numerical
troubles are very seldom.

Only markshare1 1, which we were not able to solve, is numerically less sta-
ble. As explained in Sect. 3.6.2, in contrast to the other instances, the node count
for markshare1 1 significantly increased with the exact solver. The reason isthat
in the course of the branch-and-bound process some of the nearly integral approxi-
mate LP solutions do not correspond to integral exact LP solutions (best primal bound
found within the imposed limits is 235/398953428.), which causes additional branch-
ings. On all other easy instances, this did not happen.

Notice that this experiment also shows that all studies on the easy test set were
fair. We did not compare solution times for instances where the inexact code ter-
minates quickly, but computes a result that is far from correct. The picture is more
diverse on numerically more difficult instances as considered in the next section.

Table 6: Comparison of exact and approximate objective function values oneasy test set. If absolute
difference (computed exactly) between “Exact Objval” and “Approx Objval” is non-zero, closest FP
number is displayed in “Difference”

Exact-Reliablity Inexact-Reliablity
Example Exact Objval Approx Objval Difference

30:70:45:0 95:100 3 3.00000000000000e+00
acc-0 0 0.00000000000000e+00
acc-1 0 0.00000000000000e+00
acc-2 0 0.00000000000000e+00
air03 340160 3.40160000000000e+05
air05 26374 2.63740000000000e+04
bc1 50977910556167604095053

7410251567595449186579772827333490018700226416986215080747642965436704233842514333106675453237057/

15270333832433069472297484492900269567431889237364188622738470597742625044704785542138790625268084

4296971834035564360269

3.33836254764631e+00 5.45491510972293e-12

bell3a 219607579/250 8.78430316000000e+05
bell5 28020020286/3125 8.96640649152000e+06
bienst1 187/4 4.67500000000000e+01
bienst2 273/5 5.46000000000000e+01
blend2 1519797/200000 7.59898500000000e+00

2 Of course, even with a very carful implementation and extensive testing, a certain risk of an imple-
mentation error remains (also in the underlying exact LP solver and the software package for rational
arithmetic). So, the exact objective values reported here come with no warranty.

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 23

Table 6: continued

Exact-Reliablity Inexact-Reliablity
Example Exact Objval Approx Objval Difference

dano33 746062958774188756

39563005360272004148626307217961730740455687448763160640101226321601863734721821047

4017234829888981007468518470539192725351970834245479866979873457472433164600157491/

12944736812262835785385005568147813857740777514791774551263454074579480506705971398

10427521374187282124044010674175105570424419250569387372471721899344848409549795094

271326128611000

5.76344633030206e+02 4.37618286123444e-10

dano34 67206255269530220

77397013218912966236130303895160753522695940755911414845904055135781966795786095437838835954130036

2869529331503437575301246684643835117300073858589691321141190247919718355871398487185789578939173/

11658943171570955876486228925173492000660419263416336006298956645009511892635353747701145341091016

03637641399852024834140764994428695930329822345188426990860299552797117998407603713373282618672734

72511761250000

5.76435224707201e+02 2.69535256699552e-12

dano35 1743173141933503

23944289922574375643749932000407736302001575501699804011697573580822524418821770737899385131876111

5142959892134982985899839212470173744197339573048531004994144600130554163619739904828816505537623/

30214904812063284849917509108363229121498170037716519591132122206836805081257536132318028700350141

64361460271176698537302130592201747497379591768297328768660696668326008580144081308486528857679334

267391476000

5.76924915956559e+02 2.75504852651767e-13

dcmulti 188182 1.88182000000000e+05
egout 5681007/10000 5.68100700000000e+02
eilD76 885411847/1000000 8.85411846999999e+02 1.00000000000000e-12
enigma 0 0.00000000000000e+00
flugpl 1201500 1.20150000000000e+06
gen 56156681359/500000 1.12313362718000e+05
gesa3 125881983070952346961091799641922753/

4497223795921220170000000000

2.79910426483827e+07 1.39669000058314e-08

gesa3o 125881983070952346961091799641922753/

4497223795921220170000000000

2.79910426483827e+07 1.39669000058314e-08

irp 3039873209/250000 1.21594928360000e+04
khb05250 106940226 1.06940226000000e+08
l152lav 4722 4.72200000000000e+03
lseu 1120 1.12000000000000e+03
markshare11 — 0.00000000000000e+00 —
markshare40 1 9.99999999999993e-01 7.00000000000000e-15
mas76 20002527071/500000 4.00050541420000e+04
mas284 457028618411/5000000 9.14057236822000e+04
misc03 3360 3.36000000000000e+03
misc07 2810 2.81000000000000e+03
mod008 307 3.07000000000000e+02
mod010 6548 6.54800000000001e+03 1.00000000000000e-11
mod011 -2101835

060869765611806707157057700172078890971205597474723579308113515965418257/

38524404299376185352199495064717833208094497837626334252203300000000000

-5.45585350142273e+07 3.29093662039378e-08

neos5 15 1.50000000000000e+01
neos8 -3719 -3.71900000000000e+03
neos11 9 9.00000000000000e+00
neos21 7 7.00000000000000e+00
neos897005 14 1.40000000000000e+01
nug08 214 2.14000000000000e+02
nw04 16862 1.68620000000000e+04
p0033 3089 3.08900000000000e+03
p0201 7615 7.61500000000000e+03
pk1 11 1.10000000000000e+01
qap10 340 3.39999999999999e+02 1.00000000000000e-12
qnet1o 16029692681/1000000 1.60296926810000e+04
ran13x13 3252 3.25200000000000e+03
rentacar 61302410414087064221219/20193989222400003.03567609841487e+07 5.06500607490391e-08
rgn 2054999981/25000000 8.21999992400000e+01
stein27 18 1.80000000000000e+01
stein45 30 3.00000000000000e+01
swath1 1516285183/4000000 3.79071295750000e+02
swath2 7703993859/20000000 3.85199692950000e+02
vpm1 20 2.00000000000000e+01
vpm2 55/4 1.37500000000000e+01

24 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

6 Numerically Difficult MIP Instances

In the last section, we showed that the exact branch-and-bound code was able to solve
the problems in our easy test set within a reasonable factor of the time required by the
inexact branch-and-bound solver. Here we will analyze its behavior on numerically
difficult instances.

6.1 Selecting the Test Set

Before going any further we must ask: what does it mean for a MIP to benumeri-
cally difficult? It would be nice if there were some clear, well defined properties that
would predict which instances could be solved easily using floating-point computa-
tion, and which instances would succumb to numerical issuesin the solution process.
Unfortunately, this question does not have a simple answer.

We first focus our attention to linear programming where a number of authors
have studied the related idea of condition measures [13,16,36,39,40]. LPs are con-
sideredill-conditioned if small modifications in the problem data can have a large
effect on the solution; in particular, if they lead to changes in the optimal objective
value, changes in primal or dual feasibility, or changes in the structure of the final
LP basis. Connections have been made between LP condition measures and the com-
plexity of solving them [14,15,41,44]; ill-conditioned LPs may require higher pre-
cision arithmetic or more interior point iterations. Computational studies have also
investigated these ideas [12,37]. However, LP condition numbers are not always a
good predictor that LP instances will or will not be solvableby floating-point soft-
ware packages. For example, in [37], 71% of the NETLIB LP instances [9,23] were
observed to have infinite condition measures, 19% after pre-processing. However,
in [27], double-precision LP solvers were used to identify the optimal basis for all
NETLIB LP instances; this could be seen as an indication that, in some practical
sense, these instances are not numerically difficult. Conversely, one could easily con-
struct well conditioned LPs that are unsolvable by double-precision based software
by, e.g., scaling the data to contain entries too large or small to be represented by a
double-precision number.

Turning our attention back to MIPs, to the best of our knowledge no study has
defined or discussed the notion of a condition measure. When switching from con-
tinuous to discrete variables arbitrarily small changes inthe data defining an instance
is more likely to alter the feasibility or optimality. As thenature of our study is com-
putational we will prefer a test set that is numerically difficult in the practical sense
– meaning it is composed of instances on which software packages available today
compute incorrect or conflicting results or exhibit evidence of incorrect computations
within the solution process.

Starting from a total of over 600 instances taken from the unstable test set of
the MIPLIB 2010 library [29], the COR@L MIP collection [32,31], instances that
were submitted to the NEOS server [18,34] to be solved exactly, and instances from
projects at ZIB, we collected a test suite of 50 instances, which we will call the
numerically difficult test set. Table 7 states the origin and a short description of the

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 25

Table 7 Descriptions and references for numerically difficult test set

Example Originator and description

alu101, alu105, alu107,
alu108, alu109, alu161,
alu162, alu165, alu107,
alu168, alu169

T. Achterberg [1,2]
Arithmetic logical unit (ALU) property checking instances.Feasible so-
lutions correspond to counter-examples of given properties, infeasibility
verifies correctness of property. The first number in each instance name
is the number of input bits in the ALU. The second number indicates the
property being checked. Properties 1–8 are valid, and property 9 is invalid.

bernd2 T. Koch
Wideband Code Division Multiple Access (W-CDMA) base station assign-
ment problem.

cnr dual mip1,
cnr heurmip1,
ilp sh5, ilp sh6,
prodplan1, prodplan2,
opti 157 0, p4, x01

Zuse Institute Berlin (ZIB)
Instances from research projects at ZIB.

dfn6 load, dfn6fpload,
dfn6f cost, dfn6fpcost

T. Koch [11]
Access planning for German National Research and Education Network.

neumshcherb A. Neumaier, O. Shcherbina [35]
Small numerically difficult instance given as example in [35].

norm-aim Pseudo-Boolean Competition 2010 [38]
Short fornormalized-aim-200-1 6-yes1-3.
Instance from pseudo-Boolean competition at the SAT 2010 conference.

npmv07, ns2017839,
ran14x18.disj-8, sp98ir

M IPLIB 2010 [29]
Instances from the MIPLIB 2010 library.

neos-1053591, neos-1062641,
neos-1367061, neos-1603965,
neos-522351, neos-619167,
neos-799716, neos-839838

COR@L [31]
Instances from the COR@L test library.

ns1629327, ns1770598,
ns1859355, ns1866531,
ns1900685, ns1925218,
ns2080781

H. Mittelmann [18,34]
Instances submitted to QSOPT EX [7] through the NEOS server.

tkat3K, tkat3T, tkat3TV,
tkatTV5

T. Koch [28]
Facility location problems from Telekom Austria.

chosen instances. Furthermore, Table 8 shows the statistics that were relevant for the
selection of these instances; met criteria are put in bold.

We now describe the empirically motivated criteria which wehave used to clas-
sify instances as numerically difficult. They are based directly on the behavior of
floating-point MIP solvers applied to the instances.

One attempt to identify numerical issues during the solvingprocess was recently,
with version 12.2, introduced in CPLEX. It considers the condition number of the
optimal LP bases at the branch-and-bound nodes and classifies them asstable, suspi-
cious, unstable, andill-posed(see [29] for more details). Even though this measure
is highly dependent on the solution process and may not help to identify numeri-
cally unstable instances, we found it reasonable to take it as one criterion for the

26 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Table 8 Selection criteria for numerically difficult test set. Bold numbers indicate that criterion is met

Example psusp punstab pillpo AL rcoef rrhs robj db pb

alu101 0.373 0.006 0.003 0.008 1e+06 1e+06 1 Infeas 8.3999994e+01
alu105 0.536 0.582 0.001 0.179 1e+06 1e+06 1 Infeas Infeas
alu107 0.444 0.216 0.021 0.069 1e+06 1e+06 19.1000004e+01 8.3000006e+01
alu108 0.085 0.064 0.003 0.020 2.1e+06 2.1e+06 18.7000000e+01 8.2999996e+01
alu109 0.032 0.032 0.023 0.033 2.1e+06 2.1e+06 19.3000000e+01 8.2999996e+01
alu161 0.483 0.206 0.022 0.065 4.3e+09 4.3e+09 1 Infeas 8.0000000e+01
alu162 0.614 0.971 0.017 0.294 4.3e+09 4.3e+09 1 Infeas Infeas
alu165 0.040 1.000 0.033 0.300 4.3e+09 4.3e+09 1 Infeas Infeas
alu167 0.932 0.176 0.048 0.071 4.3e+09 4.3e+09 1 9.9000000e+01 7.2000030e+01
alu168 0.074 0.007 0.019 0.019 8.6e+09 8.6e+09 18.6000000e+01 7.2000030e+01
alu169 0.095 0.024 0.031 0.032 8.6e+09 8.6e+09 11.2100000e+02 7.2000008e+01
bernd2 0.889 0.121 0.003 0.045 1.8e+10 5e+08 2e+04 1.1309147e+05 1.0858925e+05
cnr dual mip1 4.3e+06 2.1e+09 2e+11 5.9803578e+07 5.9803578e+07
cnr heurmip1 4.3e+06 2.1e+092.4e+13 5.9803579e+07 5.9803579e+07
dfn6 load 0.016 0.000 5.8e+06 1e+04 4 4.3728774e+00 3.7438423e+00
dfn6fp load 0.113 0.001 0.001 8.6e+06 1e+04 1.7e+067.6974176e+00 6.9360751e+00
dfn6f cost 0.062 0.012 0.004 8.6e+06 1e+04 41.0000000e+03 9.0000000e+02
dfn6fp cost 0.070 0.002 0.001 8.6e+06 1e+04 1.7e+081.0000131e+03 9.0001138e+02
ilp sh5 0.021 0.050 0.015 1.8e+10 1.7e+06 4 1.4280000e+03 1.4280000e+03
ilp sh6 0.090 0.047 0.014 1.8e+10 1.7e+06 4 1.4120000e+03 1.4120000e+03
neumshcherb 0.500 0.005 17 4.6 1 Infeas -2.0000000e+00
norm-aim 0.282 0.624 0.064 0.246 2 1 1 Infeas 1.7700000e+02
npmv07 0.378 1.000 0.300 2.3e+08 7.7e+04 1 1.0480981e+11 1.0480981e+11
neos-1053591 0.650 0.007 1e+10 1e+05 1 -3.6629144e+03 -3.6629144e+03
neos-1062641 0.542 0.005 3.6e+07 8.9e+05 1 2.4431301e-10 -7.8671292e-11
neos-1367061 0.940 0.009 8e+03 1 3.3e+02 3.1320456e+07 3.1320456e+07
neos-1603965 0.021 0.000 2e+11 1.5e+06 1.1e+04 6.1947841e+08 6.1924437e+08
neos-522351 0.917 0.009 5e+05 4e+03 1.6e+02 1.7891077e+04 1.7891077e+04
neos-619167 0.907 0.018 0.005 0.019 1.9e+07 1e+06 1 2.1415929e+00 1.6648936e+00
neos-799716 1.000 0.939 0.282 1.7e+11 1e+08 1 Infeas 4.9326707e+06
neos-839838 0.022 0.000 1e+08 1 3.1e+061.0667738e+08 1.0665717e+08
ns1629327 13 8.9 2.7e+11 -1.0980319e+01 -1.0980319e+01
ns1770598 0.105 0.005 0.001 0.0038.1e+13 8.2e+15 1 2.5968209e+04 2.5968209e+04
ns1859355 0.048 0.000 1.5e+07 1.3e+04 18.0467056e+00 7.9945700e+00
ns1866531 0.500 0.005 8.2e+07 9e+04 1 9.0000001e+00 8.9335230e-07
ns1900685 0.912 0.009 3.2e+06 1.2e+12 1.4e+02 3.4530000e+03 1.1590000e+03
ns1925218 0.083 0.883 0.117 0.382 1e+09 1e+09 1 Infeas 4.6156758e+06
ns2080781 0.118 0.059 0.019 2.7e+11 1e+06 1 1.6029844e-13 0.0000000e+00
ns2017839 1.000 0.094 0.037 1.1e+08 1e+07 8.3e+06 Infeas 7.7030495e+13
opti 157 0 0.167 0.167 1e+21 2e+21 1 Infeas 8.5931330e+03
p4 0.301 0.003 1.4e+06 3.5e+062.9e+12 2.0226653e+14 2.0226653e+14
x01 1.000 0.010 2.1e+06 2.2e+06 1.2e+08 2.1178284e+10 2.1476524e+10
prodplan1 1.000 1.000 0.300 4.6e+06 5.6e+12 1.1e+05 -5.4578562e+07 -5.4578562e+07
prodplan2 1.000 0.010 4.2e+04 5.9e+10 1.7 -2.3939943e+05 -2.3939943e+05
ran14x18.disj-8 0.000 1.2e+10 45 2.6e+02 3.7610000e+03 3.7120000e+03
sp98ir 5.7e+02 3.6e+03 93 2.1996003e+08 2.1967679e+08
tkat3K 0.904 0.009 8e+04 1.5e+05 1.2e+05 4.7728181e+06 4.7728181e+06
tkat3T 0.949 0.001 0.010 8e+04 1.5e+05 2.3e+05 5.5648918e+06 5.5648918e+06
tkat3TV 0.920 0.001 0.009 8e+04 1.5e+05 2.3e+05 8.3883987e+06 8.3883987e+06
tkatTV5 0.975 0.010 1.6e+05 1.2e+05 7.8e+05 2.8117644e+07 2.8117644e+07

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 27

selection of our test set. In Table 8, the first block of columns, “psusp”, “ punstab”,
and “pillpo”, states the relative frequency of the sampled bad condition number cat-
egories. We usedset mip strategy kappastats 2, i.e., computed LP condition
numbers for every subproblem. Furthermore, CPLEX weights these three groups into
one estimate for the probability of numerical difficulties.It is calledattention level
(column “AL”). Since the estimate depends on the solution process, we run the solver
with five different parameter settings: default settings, presolving disabled, cuts dis-
abled, primal heuristics disabled, and all three components disabled. The statistics in
Table 8 refer to the worst (largest) values observed among the runs (time limit of 2
hours), and we display only non-zero values.

Our second indicator of numerical issues is, whether the input data contain values
of very different magnitude. The columns “rcoef”, “ rrhs”, and “robj” state the ratio
between the largest and the smallest absolute non-zero entry in the coefficient matrix,
the right hand side vector, and the objective function vector, respectively. Largest and
smallest values are taken from the log files of CPLEX.

As a third point, we checked for inconsistent results returned by different
MIP solvers on various parameter settings. We run SCIP 2.0.2and CPLEX (with
mipkappa computation, and without) and in both solvers, applied the five settings
mentioned above. Columns “db” and “pb” report the maximum dual bound and the
minimum primal bound returned at termination among all runs. Notice that all in-
stances have minimization form. In case of infeasibility detection, we work with pri-
mal and dual bounds of 1020 and display “Infeas” in Table 8. We selected instances
that meet one of the following criteria

– Unstable LPs: “AL” ≥ 0.1, “psusp” ≥ 0.5, “punstab” ≥ 0.3, or “pillpo” ≥ 0.1

– Wide input data range: “rcoef” ≥ 1010, “rrhs” ≥ 1010, or “robj” ≥ 1010

– Inconsistent results:(“db” − “pb”)/max{|“db” |, |“pb” |,1}> 10−6.

6.2 Computational Study

We will discuss three topics on the numerically difficult instances: the error-proneness
of the inexact solver, the performance of the exact solver, and the relevance of branch-
ing decisions based on exact LP solutions. The last point will be addressed in the next
section on possible improvements.

For this purpose, we evaluated the results and performance of our best exact
branch-and-bound version of SCIP (“Exact-Reliability” with reliability branching
and dual bounding strategy: automatic selection interleaved by exact LP calls) and its
inexact counterpart (“Inexact-Reliablity”). The set-up of the experiment is the same
as for the easy test set, described in Sect. 3.6; in particular, we use a time limit of
24 hours and a memory limit of 13 GB. Note that during the test set selection, very
hard instances for which both solvers failed to terminate within the imposed limits
were removed.

28 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Table 9: Comparison of exact and approximate objective function values onnumerically difficult test set.
If absolute difference (computed exactly) between “Exact Objval” and “Approx Objval” is non-zero,
closest FP number is displayed in “Difference”

Exact-Reliablity Inexact-Reliablity
Example Exact Objval Approx Objval Difference

alu101 Infeas 8.50000000000000e+01 ∞
alu105 Infeas Infeas
alu107 — 8.30000047702360e+01 —
alu108 — 8.40000019080471e+01 —
alu109 — 8.40000019077561e+01 —
alu161 — 9.10000000000000e+01 —
alu162 Infeas Infeas
alu165 Infeas — —
alu167 — 7.90000000000000e+01 —
alu168 — 7.90000000008731e+01 —
alu169 — 7.90000000000000e+01 —
bernd2 (int of 2147 digits)/(int of 2141 digits) 1.12090603170608e+05 1.00086584527058e+03
cnr dual mip1 119607156586463627/2000000000 — —
cnr heurmip1 — 5.98035789799395e+07 —
dfn6 load — 3.74384225843200e+00 —
dfn6fp load — 6.93593657927233e+00 —
dfn6f cost 1000 1.00000000000000e+03
dfn6fp cost 5000065343183/5000000000 1.00001080799110e+03 2.26064550000000e-03
ilp sh5 1428 1.42800000000000e+03
ilp sh6 1412 1.41200000000277e+03 2.77000000000000e-09
neumshcherb -2 -2.00000000186265e+00 1.86265000000000e-09
norm-aim 200 2.00000000000000e+02
npmv07 — 1.04809812554514e+11 —
neos-1053591 -4578643/1250 -3.66291440000000e+03
neos-1062641 — 0.00000000000000e+00 —
neos-1367061 783011406612429/25000000 3.13204562644972e+07 4.00000000000000e-08
neos-1603965 — 6.19244367662955e+08 —
neos-522351 4472769279/250000 1.78910771160000e+04
neos-619167 — 1.67926829831853e+00 —
neos-799716 — 4.93267066169203e+06 —
neos-839838 2133143427299/20000 1.06657171364950e+08
ns1629327 -109803191329325384099/10000000000000000000-1.09803191329325e+01 3.84099000000000e-14
ns1770598 (int of 1190 digits)/(int of 1184 digits) 2.59682092873858e+04 3.20057499299592e-08
ns1859355 17656324

3137728817544965354640796968772247963283039222284232036674193433465271403875/

21942301712174354766184393675200873279121480678532356015802745213826986332082

011659

8.04670564893240e+00 9.28049536228506e-12

ns1866531 10 9.50234212056133e-07 9.99999904976579e+00
ns1900685 3453 3.45300000000000e+03
ns1925218 — 6.86828679741287e+06 —
ns2080781 — 0.00000000000000e+00 —
ns2017839 — 7.70304949632221e+13 —
opti 157 0 Infeas 8.59313300000015e+03 ∞
p4 Infeas — —
x01 Infeas — —
prodplan1 — -5.45785617339179e+07 —
prodplan2 -185497557187228867655290921686042318951/

774845425502612687685652190000000

-2.39399435141407e+05 2.99563575827916e-10

ran14x18.disj-8 — 3.71199999853663e+03 —
sp98ir 1098383952/5 2.19676790400000e+08
tkat3K 47728181/10 4.77281810000000e+06
tkat3T 22259567/4 5.56489175000000e+06
tkat3TV 167767973/20 8.38839864999998e+06 2.00000000000000e-08
tkatTV5 1124705769/40 2.81176442250000e+07

First, we check how often the inexact run produced wrong results. Like Table 6
for the easy instances, Table 9 presents the absolute “Difference” between the ob-
jective function values returned by the exact and the inexact run (“Exact Objval”
and “Approx Objval”). Sincebernd2 andns1770598 have very long exact objective

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 29

Geometric mean
for instances solved
by all settings (26)

Setting slv Nodes Time [s] DB [s]

Inexact-Reliability 46 5 650 93.7 —
Exact-Reliability 30 10 499 368.4 58.8

Table 10 Summary of performance for best exact
solver and inexact counterpart onnumerically dif-
ficult test set. “slv” is number of instances solved,
“DB” is safe dual bounding time

(a)

5

10

15

20

25

30

35

40

45

50

1 10 100

N
um

be
r

of
in

st
an

ce
s

No. of times slower than fastest

Inexact-Reliablity

��
��

� � �

�

Exact-Reliablity

� ��
� ��

���
��

��
��

��
� � �

�

(b)

5

10

15

20

25

30

35

40

45

50

1 10 100

N
um

be
r

of
in

st
an

ce
s

No. of times more nodes than solver with fewest

Inexact-Reliablity

��
���

��
� � �

�

Exact-Reliablity

��
��
���

��
� � � �� � �

�

Figure 4 Comparison of best exact solver and inexact counterpart onnumerically difficult test set. a
Performance profile for overall solving time “Time”. b Performance profile for branch-and-bound nodes
“Nodes”

function values, we only print the number of digits of their numerators and denom-
inators. Again, we mark cases where a solver did not terminate at optimality within
the limits (see Table 11 discussed later) by a “—”. For non-zero values, we report in
column “Difference” the closest FP-number.

We can compare the results for 26 instances, on the others, one of the solvers did
not terminate within the limits. For half of them, the returned objective values were
different, where for five instances (alu10 1, bernd2, dfn6fp cost, ns1866531,
andopti 157 0) this difference was significant. Furthermore, it is known that ex-
cept foralu10 9 andalu16 9 all of thealu instances in our test set are infeasible,
meaning the inexact run fails on at least five more instances.

Now we evaluate the performance. On the easy test set, the exact solver was
only moderately slower than the inexact one and could solve all but one instance
within the limits. In geometric mean, the solution time doubled, where most instances
were only up to 20 times slower and the largest slowdown factor was 40. The node
count in geometric mean was similar in the exact and the inexact branch-and-bound
runs. Here, the picture is more diverse. Table 11 presents the solution times and the
node count for the individual instances; they are split intofour subsets depending on
the accuracies of the inexact solver (zero, small, significant (> 10−6), or unknown
“Difference” in Table 9). The results are summarized in Table 10 and visualized in
Fig. 4. They have the same layout as the tables and plots in Sect. 3.6.

30 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

Table 11 Overall performance of best exact solver and inexact counterpart onnumerically difficult test
set. Detailed results, grouped by accuracy of the inexact solver (zero, small, significant, or unknown
“Difference” in Table 9). “NotInt” plus “NotInt-Inf” (“ NotInfeas”) counts nodes where LP relaxation
was wrongly claimed integral (infeasible) by floating-pointLP solver; italic font if all integrality claims
were wrong. Instances missing bounds on variables are marked by “×”. Solving times within 5% of the
fastest setting are put in bold

Inexact-Reliability Exact-Reliability
Example Nodes Time [s] Nodes Time [s] NotInt NotInt-Inf NotInfeas

alu105 4 077 3.9 74 183 95.7
alu162 59 1.0 63 5.1 4

× dfn6f cost 23 771 6452.8 320 840 56063.3 384 49
× ilp sh5 124 213 3433.8 126 235 21547.7

norm-aim 169 635 164.5 5 863 15.9 2
× neos-1053591 88 969 117.4 241 386 8211.0 2 572 1 230
× neos-522351 20 483 35.7 26 369 420.6
× neos-839838 71 119 7235.0 40 867 4365.5
× ns1900685 29 336 4.3 28 438 8.2

sp98ir 78 788 6615.5 12 385 410.9
tkat3K 3 469 16.1 6 131 44.5
tkat3T 13 490 108.4 9 220 83.5
tkatTV5 10 113 175 29585.9 5 947 286 29845.5

× ilp sh6 16 083 594.6 15 513 1864.4
neumshcherb 5 1.0 5 1.0

× neos-1367061 267 1065.7 745 5356.3
× ns1629327 26 138 26.5 57 051 2772.2 273

ns1770598 11 519 36.9 7 956 53.9
× ns1859355 30 396 65.3 32 936 221.3 298 87
× prodplan2 4 1.0 31 26.0

tkat3TV 16 796 147.9 7 689 72.7

alu101 5 859 5.9 1 489 343 1930.5 5 189
× bernd2 13 405 10049.0 23 488 81808.3 178 75
× dfn6fp cost 16 921 2022.6 71 039 9056.4 53 48

ns1866531 1 1.0 170 13.7 91 64
× opti 157 0 119 4.1 119 8.2 1

alu107 2 959 2.5 >87 559 918 >86400.0 ≥1 227 ≥520
alu108 40 372 21.1 >75 755 192 >86400.0 ≥941 ≥441
alu109 94 144 45.3 >74 933 946 >86400.0 ≥444 ≥428
alu161 2 783 4.4 >41 441 026 >86400.0 ≥42 807 ≥496 233 ≥246 605
alu165 >171 786 359 >86400.0 101 727 161.9 1 059
alu167 3 469 3.6 >4 330 018 >86400.0 ≥294 094 ≥258 965 ≥2 348
alu168 1 415 760 980.4 >98 010 563 >86400.0 ≥7 310 ≥717 ≥2 687
alu169 829 156 432.6 >16 800 387 >86400.0 ≥410 640 ≥36 361 ≥490

× cnr dual mip1 >1 612 128 >86400.0 82 332 11523.5
× cnr heurmip1 321 303 38523.2 >935 604 >86400.0
× dfn6 load 2 846 37.1 >136 256 >86400.0 ≥66 286 ≥11 624
× dfn6fp load 44 538 8211.8 >1 671 >86400.0
× npmv07 46 26.2 >53 >86400.0 ≥19
× neos-1062641 100 1.0 >598 633 >86400.0 ≥299 253
× neos-1603965 1 61.7 >1 872 >86400.0 ≥1 872
× neos-619167 246 133 7909.1 >784 177 >86400.0 ≥38 242
× neos-799716 115 74.6 >6 013 >86400.0 ≥25 ≥3
× ns1925218 886 119 13804.4 >3 699 549 >86400.0 ≥70 065

ns2080781 40 1.0 >2 373 236 >86400.0 ≥211 271 ≥598 285
× ns2017839 32 543.8 >1 >86400.0
× p4 >1 529 624 >86400.0 1 191.8
× x01 >729 677 >86400.0 1 104.4
× prodplan1 100 628 26804.9 >13 >86400.0

ran14x18.disj-8 22 477 620 52701.6 >31 821 206 >86400.0 ≥16 801 ≥9

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 31

First of all, on 9 instances, we actually benefit from taking care of the numerics.
There were 4 instances (alu16 5, cnr dual mip1, p4, andx01) that were solved
within the limits by the exact solver, but not by the inexact one, and 5 instances
(norm-aim, neos-839838, sp98ir, tkat3T, andtkat3TV) that were solved by both
versions, but where the exact solver was faster; the speed factors vary between 1.5
and 15.

We now analyze the other 41 instances, where the exact code isslower than the
inexact one. Notice that, by definition of the numerically difficult test set (it contains
only instances which one of the solvers can process within the imposed limits), the
inexact code terminates on all these instances. We first observe that the exact code
can solve only 21 instances, a much smaller portion than on the easy test set. Here,
the degradation factors for the time are in most cases only upto 20 as well; but we
also observe larger factors of up to 300 (alu10 1, neos-1053591, andns1629327).
However, foralu10 1 the inexact solver returned a wrong answer. Examining the
remaining 20 instances, which were not solved by the exact code within the imposed
limits, we already see that they will include even larger slowdown factors. But some
of the results of the inexact solver will be wrong (for fivealu instances this is already
known for sure, see above), since most of these instances were collected because of
inconsistent results between different solvers and settings.

Why is the performance not as good as on the easy test set? For the numerically
more difficult instances, the exact code has to often processmore branch-and-bound
nodes. As explained in Sect. 4, this is to some extend due to reliability branching
being sensitive to small changes in the solving process, butthe main reason is that
the inexact solverwronglycuts off some nodes due to FP-errors. Table 11 presents, in
Columns “NotInfeas”, “NotInt”, and “NotInt-Inf”, how often the exact code would
have made wrong decisions if the result of the inexact LP solver would not have
been safely verified; which indicates wrong decisions in theinexact MIP solver. All
larger slowdown factors come along with mistakes in the inexact solver; except for
dfn6fp load, ns2017839 andprodplan1, where the degradation is caused by ex-
pensive LP calls.

Column “NotInfeas” states the number of nodes where the inexact LP solver
wrongly claims LP infeasibility at a node, which leads to more branchings in the
exact solver and thus increases the node count. This happenson 9 of the 50 instances,
but never occurred on the easy MIPs.

Column “NotInt” counts the nodes where the floating-point LP solution was in-
tegral within tolerances (i.e., would have been accepted bythe inexact solver) but
verifying the primal bound (Step 7 of Alg. 1) did not allow us to cut off the node.
This happens on 20 of the 50 instances, in contrast to only oneinstance for the easy
test set (markshare1 1, where “NotInt” is 256). Note that “NotInt” only considers
nodes where branching on the exact LP solution takes place afterwards. That is, ap-
proximate integral LP solutions for which the corresponding exact LP turns out to be
infeasible (so pruning is legal but the argumentation of theinexact solver is wrong)
are not counted here but in Column “NotInt-Inf”. A rejected approximate primal so-
lution does not only mean that we can not cut off the current subtree in the exact code,
but it may also affect other parts of the tree because the primal bound in the exact code
is weaker than the, possibly incorrect, bound in an inexact solver. In the extreme

32 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

case, this leads to rejecting all approximate solutions found and we are not able to
cut off any node early by bounding; an italic font in Columns “NotInt” and “NotInt-
Inf” indicates such cases. The unsolvedalu instances,npmv07, neos-1062641, and
ns2080781, all with extreme degradation factors, are examples for this effect.

6.3 How to Tackle Numerically Difficult Instances?

All in all, the exact code is slower on the numerically difficult test set, sometimes
requiring much more time to solve an instance, or even failing to finish within the
imposed limits. However, a direct comparison of the solution times is not always
fair here because the inexact solver frequently, in particular, on instances with huge
differences in the performance, takes advantage of incorrect bounding decisions.

Introducing presolving, cutting planes, and primal heuristics will certainly help
to improve the performance as it normally shrinks the size ofthe branch-and-bound
tree and thus reduces the space of the search tree which the inexact solver would
incorrectly ignore, but the exact code has to process.

In addition to the generally increased node count, the time overhead also comes
from the exact LP solves in the safe primal bounding step and the ones for disproving
LP infeasibility of nodes. On the numerically difficult instances, such exact LP solves
are more often experienced or they occur so often that they add up to a large portion
of the running time. Thus, more sophisticated methods for the safe primal feasibility
check are required.

The current solver uses the first fractional variable branching rule when it
branches on the exact LP solution. This type of branching happens in two situa-
tions. First, if the approximate LP solution is nearly integral, but the safe primal
bounding step (where the exact LP is warm started with the basis of the approximate
LP solution) does not allow to prune the node (the computed exact LP solution is not
integral). Second, if the LP relaxation is claimed to be infeasible, but there exists an
exact LP solution. Our fast safe dual bounding methods are useless here, we have
to solve this LP exactly to prove LP feasibility. In contrastto the easy test set, both
situations occur frequently on the numerically difficult test set; numbers were given
in Table 11 in Columns “NotInt” and “NotInfeas”. Furthermore, both situations can
easily occur again in the subtrees created after branching on the exact LP solution. A
branching rule that reduces the risk of such expensive situations for the new subtrees
could be helpful for numerically difficult instances.

7 Conclusion

From the computational results we can make several key observations. Each safe
dual bounding method studied has strengths and weaknesses depending on the prob-
lem structure. Automatically switching between these methods in a smart way solves
more problems than any single dual bounding method on its own. Of the 57 problems
from the easy test set solved within two hours by the floating-point branch-and-bound
solver, 55 could also be solved exactly within 24 hours and the solution time was usu-
ally no more than 20 times slower. This demonstrates that thehybrid methodology

A Hybrid Branch-and-Bound Approach for Exact Rational Mixed-Integer Programming 33

can lead to an efficient exact branch-and-bound solver, not limited to specific classes
of problems.

When turning to numerically more difficult instances, where floating-point
solvers face numerical troubles and even compute incorrectresults, we observe some
stronger slowdowns with our current exact solver. However,this mainly happens on
instances where the inexact MIP solver strongly benefits from incorrect bounding
decisions. As a consequence, the bottleneck of the exact solver is a large number of
nodes for which the hybrid rational/safe floating-point approach cannot skip the ex-
pensive rational computations of the main procedure by replacing them with certain
decisions from the faster slave procedure with FP-arithmetic. Examples are wrong in-
feasibility detections of the floating-point LP solver and incorrect integrality claims
based on the approximate LP result. In the future, we will investigate techniques to
process such nodes without calling exact LP solvers and how to prevent situations
like this from repeating in subsequent subtrees.

Acknowledgements The authors would like to thank Tobias Achterberg for helpful discussions on how
to best incorporate the exact MIP features into SCIP. We would also like to thank Daniel Espinoza for
his assistance with QSOPT EX, which included adding new functionalities and writing an interface for use
within SCIP.

References

1. T. Achterberg. ALU instances.http://miplib.zib.de/miplib2003/contrib/ALU.
2. T. Achterberg.Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin, 2007.
3. T. Achterberg. SCIP: Solving constraint integer programs. Math. Programming Computation, 1(1):1–

41, 2009.
4. T. Achterberg, T. Koch, and A. Martin. The mixed integer programming library: MIPLIB 2003.

http://miplib.zib.de.
5. E. Althaus and D. Dumitriu. Fast and accurate bounds on linear programs. In J. Vahrenhold, editor,

SEA 2009, volume 5526 ofLNCS, pages 40–50. Springer, 2009.
6. D. L. Applegate, R. E. Bixby, V. Chv́atal, and W. J. Cook.The Traveling Salesman Problem: A

Computational Study. Princeton University Press, 2006.
7. D. L. Applegate, W. J. Cook, S. Dash, and D. G. Espinoza. QSopt ex.

http://www.dii.uchile.cl/~daespino/ESolver_doc/main.html.
8. D. L. Applegate, W. J. Cook, S. Dash, and D. G. Espinoza. Exact solutions to linear programming

problems.Oper. Res. Lett., 35(6):693–699, 2007.
9. AT&T Bell Laboratories, The University of Tennessee Knoxville, and Oak Ridge National Labora-

tory. Netlib Repository.http://www.netlib.org/netlib/lp.
10. R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. Savelsbergh.An updated mixed integer programming

library: MIPLIB 3.0. Optima, 58:12–15, 1998.
11. A. Bley and T. Koch. Optimierung des G-WiN.DFN-Mitteilungen, 54:13–15, 2000.
12. J. Chai and K. Toh. Computation of condition numbers for linear programming problems using Peña’s

method.Optimization Methods and Software, 21(3):419–443, 2006.
13. D. Cheung and F. Cucker. A new condition number for linear programming. Math. Programming,

91:163–174, 2001.
14. D. Cheung and F. Cucker. Solving linear programs with finite precision: I. Condition numbers and

random programs.Math. Programming, 99:175–196, 2004.
15. D. Cheung and F. Cucker. Solving linear programs with finite precision: II. Algorithms.J. Complexity,

22(3):305–335, 2006.
16. D. Cheung, F. Cucker, and J. Peña. Unifying condition numbers for linear programming.Math. Oper.

Res., 28(4):609–624, 2003.

http://miplib.zib.de/miplib2003/contrib/ALU
http://miplib.zib.de
http://www.dii.uchile.cl/~daespino/ESolver_doc/main.html
http://www.netlib.org/netlib/lp

34 William Cook, Thorsten Koch, Daniel E. Steffy, Kati Wolter

17. W. J. Cook, S. Dash, R. Fukasawa, and M. Goycoolea. Numerically safe Gomory mixed-integer cuts.
INFORMS J. Comput., 21(4):641–649, 2009.

18. J. Czyzyk, M. P. Mesnier, and J. J. Moré. The Network-Enabled Optimization System (NEOS) server.
IEEE Journal on Computational Science and Engineering, 5(3):68–75, 1998.

19. S. de Vries and R. Vohra. Combinatorial Auctions: A Survey. INFORMS J. Comput., 15(3):284–309,
2003.

20. M. Dhiflaoui, S. Funke, C. Kwappik, K. Mehlhorn, M. Seel, E. Scḧomer, R. Schulte, and D. Weber.
Certifying and repairing solutions to large LPs, how good are LP-solvers? InSODA 2003, pages
255–256. ACM/SIAM, 2003.

21. E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles. Math.
Programming, 91(2):201–213, 2001.

22. D. G. Espinoza.On Linear Programming, Integer Programming and Cutting Planes. Ph.D. thesis,
Georgia Institute of Technology, 2006.

23. D. M. Gay. Electronic mail distribution of linear programming test problems.Mathematical Pro-
gramming Society COAL Newsletter, 13:10–12, 1985.

24. GMP. GNU multiple precision arithmetic library.http://gmplib.org.
25. D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM

Computing Surveys (CSUR), 23(1):5–48, 1991.
26. IBM ILOG. CPLEX. http://www.ilog.com/products/cplex.
27. T. Koch. The final NETLIB-LP results.Oper. Res. Lett., 32,(2):138–142, 2004.
28. T. Koch.Rapid Mathematical Programming. Ph.D. thesis, Technische Universität Berlin, 2004.
29. T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, E. Danna, G. Gam-

rath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin, D. E. Steffy, and
K. Wolter. MIPLIB 2010.Math. Programming Computation, 3(2):103–163, 2011.

30. C. Kwappik.Exact Linear Programming. Master thesis, Universität des Saarlandes, 1998.
31. Lehigh University. COR@L mixed integer programming collection.

http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances.
32. J. T. Linderoth and T. K. Ralphs. Noncommercial software for mixed-integer linear programming. In

J. Karlof, editor,Integer Programming: Theory and Practice, pages 253–303. CRC Press, 2005.
33. H. D. Mittelmann. Benchmarks for Optimization Software.http://plato.asu.edu/bench.html,

2010.
34. NEOS Server.http://neos-server.org/neos.
35. A. Neumaier and O. Shcherbina. Safe bounds in linear and mixed-integer linear programming.Math.

Programming, 99(2):283–296, 2004.
36. M. Nunez and R. M. Freund. Condition measures and properties of the central trajectory of a linear

program.Math. Programming, 83:1–28, 1998.
37. F. Ord́oñez and R. M. Freund. Computational experience and the explanatory value of condition

measures for linear optimization.SIAM J. Optim., 14(2):307–333, 2003.
38. Pseudo-Boolean Competition 2010.http://www.cril.univ-artois.fr/PB10/.
39. J. Renegar. Some perturbation theory for linear programming. Math. Programming, 65:73–91, 1994.
40. J. Renegar. Incorporating condition measures into the complexity theory of linear programming.

SIAM J. Optim., 5:506–524, 1995.
41. J. Renegar. Linear programming, complexity theory and elementary functional analysis.Math. Pro-

gramming, 70:279–351, 1995.
42. D. E. Steffy.Topics in Exact Precision Mathematical Programming. Ph.D. thesis, Georgia Institute

of Technology, 2011.
43. D. E. Steffy and K. Wolter. Valid linear programming boundsfor exact mixed-integer programming.

Technical Report ZR 11-08, Zuse Institute Berlin, 2011. To appear in INFORMS Journal on Comput-
ing.

44. J. R. Vera. On the complexity of linear programming under finite precision arithmetic.Math. Pro-
gramming, 80:91–123, 1998.

45. K. Wilken, J. Liu, and M. Heffernan. Optimal instruction scheduling using integer programming. In
ACM SIGPLAN 2000, volume 35, pages 121–133. ACM Press, 2000.

46. Zuse Institute Berlin. SCIP.http://scip.zib.de.
47. Zuse Institute Berlin. SoPlex.http://soplex.zib.de.

http://gmplib.org
http://www.ilog.com/products/cplex
http://coral.ie.lehigh.edu/data-sets/mixed-integer-instances
http://plato.asu.edu/bench.html
http://neos-server.org/neos
http://www.cril.univ-artois.fr/PB10/
http://scip.zib.de
http://soplex.zib.de

	Introduction
	Hybrid Rational/Safe Floating-Point Approach
	Safe Dual Bound Generation
	Branching Rules
	How Accurate are Current MIP Solvers?
	Numerically Difficult MIP Instances
	Conclusion

