STRONG MATCHING PRECLUSION FOR AUGMENTED CUBES

EDDIE CHENG*, SHALIN SHAH ${ }^{\alpha}$, VYOM SHAH ${ }^{\alpha}$, AND DANIEL E. STEFFY

Abstract

The strong matching preclusion number of a graph is the minimum number of vertices and edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. The concept was introduced by Park and Son. In this paper, we study the strong matching preclusion problem for the augmented cube graphs. As a result, we find $\operatorname{smp}\left(A Q_{n}\right)$ and classify all optimal solutions.

Keywords: Interconnection networks, perfect matching, augmented cubes

1. Introduction

A perfect matching in a graph is a set of edges such that every vertex is incident with exactly one edge in this set. An almost perfect matching in a graph is a set of edges such that every vertex except one is incident with exactly one edge in this set, and the exceptional vertex is incident to none. If a graph has a perfect matching, then it has an even number of vertices; if a graph has an almost perfect matching, then it has an odd number of vertices. The matching preclusion number of a graph G, denoted by $\operatorname{mp}(G)$, is the minimum number of edges whose deletion leaves the resulting graph without a perfect matching or an almost perfect matching. Any such optimal set is called an optimal matching preclusion set. If G has neither a perfect matching nor an almost perfect matching, then $\operatorname{mp}(G)=0$. This concept of matching preclusion was introduced by [1] and further studied by [4-10,23,24,26]. They introduced this concept as a measure of robustness in the event of edge failure in interconnection networks, as well as a theoretical connection to conditional connectivity, "changing and unchanging of invariants" and extremal graph theory. We refer the readers

Date: March 15, 2013.
*Corresponding author.
${ }^{\alpha}$ A project started at the 2011 Oakland University Summer Mathematics Institute under the supervision of E. Cheng. A preliminary version of this project received an United States Army Award and an United Stated Air Force Certificate of Achievement at the 2012 Detroit Science Fair.
to [1] for details and additional references. In [25], the concept of strong matching preclusion was introduced. The strong matching preclusion number of a graph G, denoted by $\operatorname{smp}(G)$, is the minimum number of vertices and edges whose deletion leaves the resulting graph without a perfect matching or an almost perfect matching. Any such optimal set is called an optimal strong matching preclusion set.

Useful distributed processor architectures offer the advantages of improved connectivity and reliability. An important component of such a distributed system is the system topology, which defines the inter-processor communication architecture. Such system topology forms the interconnection network. We refer the readers to [16] for recent progress in this area and the references in its extensive bibliography. In certain applications, every vertex requires a special partner at any given time and the matching preclusion number measures the robustness of this requirement in the event of link failures as indicated in [1]. Hence in these interconnection networks, it is desirable to have the property that the only optimal matching preclusion sets and optimal strong matching preclusion sets are those whose deletion gives an isolated vertex in the resulting graph. Since interconnection networks are usually even, we only consider even graphs in this paper, that is, graphs with even number of vertices.

Proposition 1.1. Let G be a graph with an even number of vertices. Then $\operatorname{smp}(G) \leq$ $m p(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.

Proof. Since G is even, $\operatorname{mp}(G)$ is the minimum number of edges whose deletion leaves a graph with no perfect matchings. Since deleting all edges incident to a single vertex will give a graph with no perfect matchings, $\operatorname{mp}(G) \leq \delta(G)$. The claim $\operatorname{smp}(G) \leq \operatorname{mp}(G)$ is obviously true as every matching preclusion set is a strong matching preclusion set.

An optimal solution of the form given in the proof of Proposition 1.1 is a trivial (optimal) matching preclusion set. Let F be an optimal strong matching preclusion set of a graph $G=(V, E)$. Suppose $F=F_{V} \cup F_{E}$ where F_{V} consists of vertices and F_{E} consists of edges. We may assume that no element in F_{E} is incident to an element in F_{V} since F is optimal. (If $e \in F_{E}$ is incident to an element of F_{V}, then $G-F=G-(F-\{e\})$.) We call F a basic (optimal) strong matching preclusion set if F is an optimal strong matching preclusion set of G and $G-F$ has an isolated vertex, that is, there exists a vertex v such that every vertex
in F_{V} is a neighbor of v and every edge in F_{E} is incident to v. This includes the following scenario: F is a basic optimal matching preclusion set and $G-F$ is odd without almost perfect matchings. We can further restrict this class as follows: If $G-F$ is even and there is a vertex v such that every vertex in F_{V} is a neighbor of v and every edge in F_{E} is incident to v, then F is a trivial (optimal) strong matching preclusion set. For r-regular even graphs we have the following relationship between these classes of preclusion sets.

Proposition 1.2 ([2]). Let $r \geq 2$. Let G be an r-regular even graph. Suppose that $\operatorname{smp}(G)=$ r. Then every basic strong matching preclusion set is trivial.

Hypercubes are the most basic class of interconnection networks. However, they have shortcomings and a number of their variants were introduced to address some of the issues. One such popular variant is the class of augmented cubes introduced in [11]. As an improvement upon the hypercubes, the augmented cube graphs are designed to be superior in many aspects. Not only do they retain some of the favorable properties of the hypercubes but also possess some embedding properties that the hypercubes do not have. For instance, a hypercube of the $n^{t h}$ dimension contains cycles of all lengths from 3 to 2^{n} whereas the hypercube contains only even cycles. As shown in [25], bipartite graphs are poor interconnection networks with respect to the strong matching preclusion property. However, augmented cubes are not bipartite and we will show in this paper that they have good strong matching preclusion properties.

We now define the n-dimensional augmented cube $A Q_{n}$ as follows. Let $n \geq 1$, the graph $A Q_{n}$ has 2^{n} vertices, each labeled by an n-bit binary string $u_{1} u_{2} \cdots u_{n}$ such that $u_{i} \in\{0,1\}$ for all i. $A Q_{1}$ is isomorphic to the complete graph K_{2} where one vertex is labeled by the digit 0 and the other by 1 . For $n \geq 2, A Q_{n}$ is defined recursively by using two copies of ($n-1$)-dimensional augmented cubes with edges between them. We first add the digit 0 to the beginning of the binary strings of all vertices in one copy of $A Q_{n-1}$, which will be denoted by $A Q_{n-1}^{0}$, and add the digit 1 to the beginning of all the vertices of the second copy, which will be denoted by $A Q_{n-1}^{1}$. We now describe the edges between these two copies. Let $u=0 u_{1} u_{2} \cdots u_{n-1}$ and $v=1 v_{1} v_{2} \cdots v_{n-1}$ be vertices in $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$, respectively. Then u and v are adjacent if and only if one of the following conditions holds:
(1) $u_{i}=v_{i}$ for every $i \geq 1$. In this case, we call the edge (u, v) a cross edge and say $u=v^{x}$ and $v=u^{x}$.
(2) $u_{i} \neq v_{i}$ for every $i \geq 1$. In this case, we call (u, v) a complement edge and denote $u=v^{c}$ and $v=u^{c}$.

Throughout this paper, we denote the set of cross edges and complement edges in $A Q_{n}$ by X_{n} and C_{n} respectively. Clearly, $A Q_{n}$ is $(2 n-1)$-regular, $\left|C_{n}\right|=\left|X_{n}\right|=2^{n-1}$ and the edges in $C_{n}\left(X_{n}\right)$ are independent. It is well-known that $A Q_{n}$ is vertex-transitive. Another important fact is that the connectivity of $A Q_{n}$ is $2 n-1$ for $n \geq 4$. Some recent papers on augmented cubes include $[3,6,13-15,17,21,22]$. A few examples of augmented cubes are shown in Figure 1.

Figure 1.1. Augmented cubes of dimensions 1 through 4

2. Preliminaries

Our objective is to show that $\operatorname{smp}\left(A Q_{n}\right)=2 n-1$, which is the best possible result, and that all optimal solutions are trivial. In this section, we present some results that will be useful in our quest. Since the strong matching preclusion problem is a generalization of the matching preclusion problem and the latter problem has been solved for $A Q_{n}$, we state the corresponding result.

Theorem 2.1 ([6]). Suppose $n \geq 4$. Then $\operatorname{mp}\left(A Q_{n}\right)=2 n-1$. Moreover, every optimal matching preclusion set is trivial.

Given that a Hamilton cycle in an even graph induces two edge-disjoint perfect matchings, the following result uses "fault Hamiltonian" property as a sufficient condition in determining the strong matching preclusion number.

Proposition 2.2 ([2]). Let G be an r-regular even graph with the property that $G-F$ is Hamiltonian for every $F \subseteq V(G) \cup E(G)$ where $|F| \leq r-2$. Then $\operatorname{smp}(G)=m p(G)=r$.

However, we are unaware of any relationship between such "fault Hamiltonian" property and the classification of optimal strong matching preclusion sets. In order to apply Proposition 2.2, we need Hamiltonian results for $A Q_{n}$. Fortunately, such a result is known.

Theorem 2.3 ([15]). Let $n \geq 4$. Suppose $F \subseteq V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$. If $|F| \leq 2 n-4$, then $A Q_{n}-F$ is Hamiltonian connected ${ }^{1}$; if $|F| \leq 2 n-3$, then $A Q_{n}-F$ is Hamiltonian.

3. Main Result

It follows from Proposition 2.2 and Theorem 2.3 that $\operatorname{smp}\left(A Q_{n}\right)=2 n-1$ for $n \geq 4$. It remains to classify all optimal solutions. We claim that all optimal solutions are trivial. Given the recursive structure of augmented cubes, the natural method is to use induction. The first step is to check the base case.

Lemma 3.1. $\operatorname{smp}\left(A Q_{4}\right)=$ 7. Moreover every optimal strong matching preclusion set is trivial.

Proof. This result was verified by a computer program. The check was done using a Python program and the NetworX package [12] for graph representation. The program verified that for every 7-element fault sets F, unless F is trivial, $A Q_{4}-F$ has a perfect matching or an almost perfect matching. In order to reduce the number of cases that had to be checked we note that Theorem 2.1 implies that that we may assume F contains at least one vertex. Moreover, since $A Q_{4}$ is vertex-transitive, one vertex in F can be fixed. Additionally, it can be

[^0]assumed that no fault edge is incident with a fault vertex. In wall clock time, the computer verification took a couple days on a modern desktop computer.

Before we present the proof of our main result, we need a number of easy technical results. We start with the following useful observation of augmented cubes which we will apply without explicitly referencing it.

Proposition 3.2. Let $n \geq 3$. Let u be a vertex of $A Q_{n}$. Then u^{x} is adjacent to u^{c}. Moreover, there is a unique vertex v such that u and v are adjacent, $v^{c}=u^{x}$ and $v^{x}=u^{c}$. In other words, u, v, u^{x}, u^{c} form a complete graph on four vertices.

We need two more facts regarding matchings which we will now state without proof.

Proposition 3.3. Let G be a graph with no isolated vertices. Suppose that G has an almost perfect matching M that misses vertex v. Then there exists an almost perfect matching in G which misses a vertex other than v.

Proposition 3.4. Let G be a graph with no isolated vertices. Suppose that G has an almostperfect matching M that misses vertex w. If G does not contain a 2-path $v-u-w$ in which v and w have degree 1, then there exist almost-perfect matchings M_{1} and M_{2} in G such that M, M_{1} and M_{2} miss different vertices.

Our main result is that every optimal conditional strong matching preclusion set in $A Q_{n}$ is trivial. Before proceeding with the proof we give some comments on the general strategy that will applied. Due to the recursive structure of $A Q_{n}$ it is natural to establish the result by induction. In particular, given any fault set F that is not a trivial strong matching preclusion set, we must show how to construct a perfect matching or almost perfect matching in $A Q_{n}-F$. We will consider several cases regarding how the faults are distributed among $A Q_{n-1}^{0}, A Q_{n-1}^{1}$ and the set of cross edges. If many faults are concentrated within one of these two subgraphs, the induction hypothesis cannot be directly applied to recover a perfect matching or almost perfect matching in that subgraph. In such cases we will remove a set A from the fault set so that induction can be applied, building a perfect matching or almost perfect matching in each of the subgraphs and finally using the structural properties
of $A Q_{n}$ to augment the matchings to form a perfect matching or almost perfect matching in the entire graph, removing any dependence on the set A. Finally, even if the faults are distributed more evenly between $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$ some care must still be taken; if an odd number of fault vertices appear in each half then induction will only provide an almost perfect matching in each, the union of these must still be augmented to produce a perfect matching in the entire graph. The art is to find the right balance in dividing the cases. This type of case analysis is the frequent method of choice in this area as seen in [18, 20, 24-26] among others for matching preclusion. Proofs for other properties on interconnection networks are equally involved; for example, see [13-15, 19, 21].

Theorem 3.5. Let $n \geq$. Then $\operatorname{smp}\left(A Q_{n}\right)=2 n-1$. Moreover, every optimal strong matching preclusion set is trivial.

Proof. The claim that $\operatorname{smp}\left(A Q_{n}\right)=2 n-1$ follows from Proposition 2.2 and Theorem 2.3. We now classify the optimal solutions. The proof is via induction. We first note that the statement is true if $n=4$ by Lemma 3.1. Let $n \geq 5$ and assume that the result is true for $A Q_{n-1}$. Let $F \subseteq V\left(A Q_{n}\right) \cup E\left(A Q_{n}\right)$ be an optimal strong matching preclusion set. As remarked earlier, we may assume that no edge in F is incident to a vertex in F. Then, we show that either $A Q_{n}-F$ contains a perfect matching or an almost perfect matching, or that F is a trivial strong matching preclusion set of $A Q_{n}$. Let $F=F_{X} \cup F_{C} \cup F_{0} \cup F_{1}$ where F_{0} and F_{1} denote the fault sets of $A Q_{n-1}^{0}$ and $A Q_{n-1}^{1}$ respectively. Similarly, F_{X} is the set of faulty cross edges while F_{C} denotes the set of faulty complement edges. We may assume that $\left|F_{0}\right| \geq\left|F_{1}\right|$. We now divide the proof into four cases:

Case 1: $\left|F_{0}\right|=2 n-1$. Then $\left|F_{1} \cup F_{C} \cup F_{X}\right|=0$. Note that $A Q_{n}-F$ has no isolated vertices, so we will show that it has either a perfect matching or an almost perfect matching. We may assume that $F=F_{0}$ contains vertices; otherwise, the result follows from Theorem 2.1. We pick two elements from F_{0} to form A. We either pick two vertices or one vertex together with an edge so that $F_{0}-A$ contains an even number of vertices. Let $F_{0}^{\prime}=F_{0}-A$. By construction, $A Q_{n-1}^{0}-F_{0}^{\prime}$ is an even graph. Suppose there is an isolated vertex v_{1} in $A Q_{n-1}^{0}-F_{0}^{\prime}$. So every vertex in F_{0}^{\prime} is adjacent to v_{1} and every edge in F_{0}^{\prime} is incident to v_{1}. Since F_{0}^{\prime} has an even number of vertices and the degree of v_{1} in $A Q_{n-1}^{0}$ is odd, F_{0}^{\prime}
contains at least one edge say, $\left(v_{1}, u_{1}\right)$. If A consists of a vertex and an edge e. Then let $A^{\prime}=(A-\{e\}) \cup\left\{\left(v_{1}, u_{1}\right)\right\}$ and it is easy to see that $A Q_{n-1}^{0}-\left(F_{0}-A^{\prime}\right)$ does not have an isolated vertex, and we may choose A^{\prime} instead of A. Now suppose that A consists of two vertices y_{1} and y_{2}. (Recall that F_{0}^{\prime} has an even number of vertices.) If F_{0}^{\prime} has a vertex z, then we may choose $A^{\prime}=\left\{y_{1}, z\right\}$ and it is easy to see that $A Q_{n-1}^{0}-\left(F_{0}-A^{\prime}\right)$ does not have an isolated vertex. Thus we assume that F_{0}^{\prime} consists of edges only. Then F has two vertices and $2 n-3$ edges. We claim that $A Q_{n}-F$ has a perfect matching. Now by the induction hypothesis, $A Q_{n-1}^{0}-\left\{y_{1}, y_{2}, v_{1}\right\}=A Q_{n-1}^{0}-\left(F_{0} \cup\left\{v_{1}\right\}\right)$ has an almost perfect matching M_{0} missing, say, w. Consider the two cross edges $\left(v_{1}, v_{1}^{x}\right)$ and $\left(w, w^{x}\right)$. By the induction hypothesis, $A Q_{n-1}^{1}-\left\{v_{1}^{x}, w^{x}\right\}$ has a perfect matching M_{1}. Now $M_{0} \cup M_{1} \cup\left\{\left(v_{1}, v_{1}^{x}\right),\left(w, w^{x}\right)\right\}$ is a perfect matching in $A Q_{n}-F$, as required.

Henceforth, we may assume that $A Q_{n-1}^{0}-F_{0}^{\prime}$ has no isolated vertices. Recall that by construction, $A Q_{n-1}^{0}-F_{0}^{\prime}$ is an even graph. So by the induction hypothesis, $A Q_{n-1}^{0}-F_{0}^{\prime}$ has a perfect matching M_{P}. We consider two subcases.

Subcase 1a: A contains distinct vertices v_{1}, v_{2} in $A Q_{n-1}^{0}$. So F has an even number of vertices and we want to find a perfect matching in $A Q_{n}-F$. If v_{1} and v_{2} are adjacent then $\left(v_{1}, v_{2}\right) \in M_{P}$ and it is easy to extend it to a perfect matching in $A Q_{n}-F$. So we may assume that M_{P} matches v_{1} and v_{2} to the vertices v_{1}^{\prime} and v_{2}^{\prime}, respectively in $A Q_{n-1}^{0}-F_{0}^{\prime}$. Consider the cross edges $\left(v_{1}^{\prime}, v_{1}^{\prime x}\right)$ and $\left(v_{2}^{\prime}, v_{2}^{\prime x}\right)$. By the induction hypothesis, $A Q_{n-1}^{1}-\left\{v_{1}^{\prime x}, v_{2}^{\prime x}\right\}$ has a perfect matching M_{1}. Now, $\left(M_{P}-\left\{\left(v_{1}, v_{1}^{\prime}\right)\left(v_{2}, v_{2}^{\prime}\right)\right\}\right) \cup M_{1} \cup\left\{\left(v_{1}^{\prime}, v_{1}^{\prime x}\right),\left(v_{2}^{\prime}, v_{2}^{\prime x}\right)\right\}$ is a perfect matching in $A Q_{n}-F$, as required.

Subcase 1b: A contains an edge $\left(v, v^{\prime}\right)$ and a vertex u. (By assumption, $u \notin\left\{v, v^{\prime}\right\}$ and $v, v^{\prime} \notin F$.) So F has an odd number of vertices and we want to find an almost perfect matching in $A Q_{n}-F$. Now let $\left(u, u^{\prime}\right) \in M_{P}$. We consider whether the edge $\left(v, v^{\prime}\right)$ is part of the matching M_{P} or not. If not, then $M_{P}-\left\{\left(u, u^{\prime}\right)\right\}$ is an almost perfect matching in $A Q_{n-1}^{0}-F_{0}$ missing u^{\prime}, which can be extended to an almost perfect matching in $A Q_{n}-F$ missing u^{\prime}, by using a perfect matching in $A Q_{n-1}^{1}=A Q_{n-1}^{1}-F_{1}$. Now assume instead that $\left(v, v^{\prime}\right) \in M_{P}$. So $M_{P}-\left\{\left(v, v^{\prime}\right),\left(u, u^{\prime}\right)\right\}$ matches every vertex in $A Q_{n-1}^{0}-F_{0}$ except v, v^{\prime}, and u^{\prime}. Since each vertex has a complement and cross edge incident with it, we simply choose the cross edges and match v and v^{\prime} to the vertices v^{x} and $v^{\prime x}$ in $A Q_{n-1}^{1}-F_{1}$. Since $\left|F_{1}\right|=0$,
it follows from the induction hypothesis that $A Q_{n-1}^{1}-\left\{v^{x}, v^{\prime x}\right\}$ has a perfect matching M_{1}. Furthermore, $\left(M_{P}-\left\{\left(v, v^{\prime}\right),\left(u, u^{\prime}\right)\right\}\right) \cup M_{1} \cup\left\{\left(v, v^{x}\right)\left(v^{\prime}, v^{\prime x}\right)\right\}$ is an almost perfect matching in $A Q_{n}-F$ missing u^{\prime}, so we are done.

Case 2: $\left|F_{0}\right|=2 n-2$. Then $\left|F_{1} \cup F_{C} \cup F_{X}\right|=1$. Note that $A Q_{n}-F$ has no isolated vertices, so we will show that it has either a perfect matching or an almost perfect matching.

Case 2a: F_{0} contains only vertices. We consider two possibilities. The first possibility is that the unique element in $F_{1} \cup F_{C} \cup F_{X}$ is an edge. Then let A be a set containing two elements of F_{0}, say u and v. By the induction hypothesis, $A Q_{n-1}^{0}-\left(F_{0}-A\right)$ has a perfect matching M_{0}. If (u, v) is an edge and it is in M_{0}, then it is easy to extend M_{0} to a perfect matching in $A Q_{n}-F$. So we may assume otherwise, and that $\left(u, u^{\prime}\right),\left(v, v^{\prime}\right) \in$ M_{0}. Since $F_{1} \cup F_{C} \cup F_{X}$ contains exactly one edge, either $\left\{\left(u^{\prime}, u^{\prime x}\right),\left(v^{\prime}, v^{\prime x}\right)\right\} \cap F=\emptyset$ or $\left\{\left(u^{\prime}, u^{\prime c}\right),\left(v^{\prime}, v^{\prime c}\right)\right\} \cap F=\emptyset$. we may assume that $\left(u^{\prime}, u^{\prime x}\right)$ and $\left(v^{\prime}, v^{\prime x}\right)$ are not in F. Now by the induction hypothesis, $A Q_{n-1}^{1}-\left(F_{1} \cup\left\{u^{\prime x}, v^{\prime x}\right\}\right)$ has a perfect matching M_{1}. Then $\left(M_{0}-\left\{\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right\}\right) \cup M_{1} \cup\left\{\left(u^{\prime}, u^{\prime x}\right),\left(v^{\prime}, v^{\prime x}\right)\right\}$ is a perfect matching in $A Q_{n}-F$. The second possibility is the unique element in $F_{1} \cup F_{C} \cup F_{X}$ is a vertex y in $A Q_{n-1}^{1}$. We consider the following scenrios.

- Suppose $y^{c}, y^{x} \in F_{0}$. Let $A=\left\{y^{c}, y^{x}\right\}$. By the induction hypothesis, $A Q_{n-1}^{0}-$ $\left(F_{0}-A\right)$ has a perfect matching M_{0}. If $\left(y^{c}, y^{x}\right)$ is in M_{0}, then it is easy to extend M_{0} to an almost perfect matching in $A Q_{n}-F$. So we may assume otherwise, and that $\left(y^{c}, u^{\prime}\right),\left(y^{x}, v^{\prime}\right) \in M_{0}$. Clearly neither u^{\prime} nor v^{\prime} is adjacent to y. So we may assume that $\left(u^{\prime}, u^{\prime x}\right)$ and $\left(v^{\prime}, v^{\prime x}\right)$ are in $A Q_{n}-F$. Now by the induction hypothesis, $A Q_{n-1}^{1}-\left(F_{1} \cup\left\{u^{\prime x}, v^{\prime x}\right\}\right)=A Q_{n-1}^{1}-\left(\{y\} \cup\left\{u^{\prime x}, v^{\prime x}\right\}\right)$ has an almost perfect matching M_{1}. Then $\left(M_{0}-\left\{\left(y^{c}, u^{\prime}\right),\left(y^{x}, v^{\prime}\right)\right\}\right) \cup M_{1} \cup\left\{\left(u^{\prime}, u^{\prime x}\right),\left(v^{\prime}, v^{\prime x}\right)\right\}$ is an almost perfect matching in $A Q_{n}-F$.
- Suppose exactly one of y^{c} and y^{x} is in F_{0}. Without loss of generality, we may assume that $y^{c} \in F_{0}$ and $y^{x} \notin F_{0}$. Let v be a vertex in F_{0} that is neither y^{c} nor y^{x}. Let $A=\left\{y^{c}, v\right\}$. By the induction hypothesis, $A Q_{n-1}^{0}-\left(F_{0}-A\right)$ has a perfect matching M_{0}. If $\left(y^{c}, v\right)$ is an edge, and it is in M_{0}, then it is easy to extend M_{0} to an almost perfect matching in $A Q_{n}-F$. So we may assume that $\left(y^{c}, u^{\prime}\right),\left(v, v^{\prime}\right) \in M_{0}$. By
construction, at most one of u^{\prime} and v^{\prime} is adjacent to y. So we may apply the usual argument.
- Suppose $y^{c}, y^{x} \notin F_{0}$. Then let A be a set containing two elements of F_{0}, say u and v. By the induction hypothesis, $A Q_{n-1}^{0}-\left(F_{0}-A\right)$ has a perfect matching M_{0}. If (u, v) is an edge, and it is in M_{0}, then it is easy to extend M_{0} to an almost perfect matching in $A Q_{n}-F$. So we may assume otherwise, and that $\left(u, u^{\prime}\right),\left(v, v^{\prime}\right) \in M_{0}$. If at most one of u^{\prime} and v^{\prime} is adjacent to y, we may apply the usual argument. Otherwise $\left\{u^{\prime}, v^{\prime}\right\}=$ $\left\{y^{c}, y^{x}\right\}$ and hence u^{\prime} is adjacent to v^{\prime}. Thus, $\left(M_{0}-\left\{\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right\}\right) \cup\left\{\left(u^{\prime}, v^{\prime}\right)\right\}$ is a perfect matching in $A Q_{n-1}^{0}-F_{0}$ and it is easy to extend it to an almost perfect matching in $A Q_{n}-F$.

Case 2b: F_{0} has at least one edge. If F_{0} has an even number of vertices, then let A be a set containing an edge from F_{0}; otherwise let A be a set containing a vertex from F_{0}. Let $F_{0}^{\prime}=F_{0}-A$. By construction, $A Q_{n-1}^{0}-F_{0}^{\prime}$ is an even graph. Suppose there is an isolated vertex v_{1} in $A Q_{n-1}^{0}-F_{0}^{\prime}$. So every vertex in F_{0}^{\prime} is adjacent to v_{1} and every edge in F_{0}^{\prime} is incident to v_{1}. Since F_{0}^{\prime} has an even number of vertices and the degree of v_{1} in $A Q_{n-1}^{0}$ is odd, F_{0}^{\prime} contains at least one edge say, $\left(v_{1}, u_{1}\right)$. If A consists of an edge e, then let $A^{\prime}=(A-\{e\}) \cup\left\{\left(v_{1}, u_{1}\right)\right\}$ and it is easy to see that $A Q_{n-1}^{0}-\left(F_{0}-A^{\prime}\right)$ does not have isolated vertices, and we may choose A^{\prime} instead of A. Now suppose that A consists of a vertex y. By construction, F_{0}^{\prime} has an even number of vertices. If F_{0}^{\prime} has a vertex z, then we may choose $A^{\prime}=\{z\}$ and it is easy to see that $A Q_{n-1}^{0}-\left(F_{0}-A^{\prime}\right)$ does not have any isolated vertices. Thus we assume that F_{0}^{\prime} consists of edges only. Then F_{0} has one vertex, namely, y. By the induction hypothesis, $A Q_{n-1}^{0}-\left\{y, v_{1}\right\}=A Q_{n-1}^{0}-\left(F_{0} \cup\left\{v_{1}\right\}\right)$ has a perfect matching M_{0}. If the unique element in $F_{1} \cup F_{C} \cup F_{X}$ is an edge, then F has one vertex, and we claim that $A Q_{n}-F$ has an almost perfect matching. Now M_{0} together with a perfect matching in $A Q_{n-1}^{1}-F_{1}$ will be a desired almost perfect matching in $A Q_{n}-F$ missing v_{1}. Now suppose the unique element in $F_{1} \cup F_{C} \cup F_{X}$ is a vertex (in $A Q_{n-1}^{1}$), say w_{1}. Then F has two vertices, and we claim that $A Q_{n}-F$ has a perfect matching. Clearly w_{1} cannot be both v_{1}^{x} and v_{1}^{c}, so we may assume that it is not v_{1}^{x}. Let M_{1} be a perfect matching in $A Q_{n-1}^{1}-\left\{v_{1}^{x}\right.$, $\left.w_{1}\right\}$ Then $M_{0} \cup M_{1} \cup\left\{\left(v_{1}, v_{1}^{x}\right)\right\}$ is a perfect matching in $A Q_{n}-F$, as required.

Henceforth, we may assume that $A Q_{n-1}^{0}-F_{0}^{\prime}$ has no isolated vertices. Recall that by construction, $A Q_{n-1}^{0}-F_{0}^{\prime}$ is an even graph. So by the induction hypothesis, $A Q_{n-1}^{0}-F_{0}^{\prime}$ has a perfect matching M_{P}. We consider two subcases.

Subcase $2 b(i)$: The element in A is the edge $\left(v_{1}, v_{2}\right)$ in $A Q_{n-1}^{0}$. We note that if $\left(v_{1}, v_{2}\right) \notin$ M_{P}, then it is easy to find a perfect matching or an almost perfect matching in $A Q_{n}-F$. So we may assume that $\left(v_{1}, v_{2}\right) \in M_{P}$. Since $\left|F_{1} \cup F_{C} \cup F_{X}\right|=1$, we claim that we can match v_{1} and v_{2} to vertices in the graph $A Q_{n-1}^{1}-F_{1}$. If our claim is correct, then we may assume that $\left(v_{1}, v_{1}^{c}\right)$ and $\left(v_{2}, v_{2}^{c}\right)$ are edges in $A Q_{n}-F$. Let M_{1} be a perfect matching or an almost perfect matching in $A Q_{n-1}^{1}-\left(F_{1} \cup\left\{v_{1}^{c}, v_{2}^{c}\right\}\right)$ depending on whether F_{1} contains a vertex. Then $\left(M_{P}-\left\{\left(v_{1}, v_{2}\right)\right\}\right) \cup M_{1} \cup\left\{\left(v_{1}, v_{1}^{c}\right),\left(v_{2}, v_{2}^{c}\right)\right\}$ is the desired perfect matching or almost perfect matching in $A Q_{n}-F$. Now, our claim is clearly true if the unique element in $F_{1} \cup F_{C} \cup F_{X}$ is an edge. Suppose the unique element in $F_{1} \cup F_{C} \cup F_{X}$ is the vertex y in $A Q_{n-1}^{1}$. Then the claim is still true (by using either cross edges or complement edges) unless y is adjacent to both v_{1} and v_{2}. In this case, we may assume that $y=v_{1}^{x}$ and $y=v_{2}^{c}$. Since the element in A is an edge, F_{0} must contain an even number of vertices. Thus F_{0} has an even number of edges and hence at least two edges. The natural argument is to choose another edge from F_{0} to form A instead of using $\left(v_{1}, v_{2}\right)$. However, we have already assumed that such an edge is chosen so that $A Q_{n-1}^{0}-\left(F_{0}-A\right)$ has no isolated vertices. So care must be taken. If such an exchange produces an isolated vertex, then we may assume that the isolated vertex is v_{1}. If there is another edge $\left(v_{1}, v_{3}\right)$ belonging to F_{0}, then we can use $A^{\prime}=\left\{\left(v_{1}, v_{3}\right)\right\}$ instead. Now it is easy to see that $A Q_{n-1}^{0}-\left(F_{0}-A\right)$ has no isolated vertices and v_{3} is not adjacent to y. So we can match v_{1} and v_{3} to vertices in the graph $A Q_{n-1}^{1}-F_{1}$.

So if our claim is not correct, then F_{0} consists of two edges, one of them is $\left(v_{1}, v_{2}\right)$, and $2 n-4$ neighbors of v_{1}, except v_{2}. Moreover, the unique element in $F_{1} \cup F_{C} \cup F_{X}$ is the vertex y in $A Q_{n-1}^{1}$, and y is adjacent to v_{1} and v_{2}. We may assume that $v_{1}^{c} \notin F$. (So $y=v_{1}^{x}$.) We will use a different construction. Let $w, z \in F_{0}$, both neighbours of v. Let $F_{0}^{\prime \prime}=F_{0}-\{w, z\}$. By the induction hypothesis, $A Q_{n-1}^{0}-F_{0}^{\prime \prime}$ has a perfect matching M_{0}. So we may assume that $\left(v_{1}, w\right),\left(z, z^{\prime}\right) \in M_{0}$. By the induction hypothesis, there is a perfect matching M_{1} in $A Q_{n-1}^{1}-\left\{y, v^{c}\right\}$. Now $\left(M_{0}-\left\{\left(v_{1}, w\right),\left(z, z^{\prime}\right)\right\}\right) \cup M_{1} \cup\left\{\left(v_{1}, v_{1}^{c}\right)\right\}$ is an almost perfect matching in $A Q_{n}-F$ missing z^{\prime}.

Subcase $2 b$ (ii): The element in A is the vertex v_{1} in $A Q_{n-1}^{0}$. Let $\left(v_{1}, v_{2}\right) \in M_{P}$. Since $\left|F_{1} \cup F_{C} \cup F_{X}\right|=1$ and we may use either cross edges or complementary edges, we may assume that $\left(v_{2}, v_{2}^{c}\right)$ is in $A Q_{n}-F$. Let M_{1} be a perfect matching or an almost perfect matching in $A Q_{n-1}^{1}-\left(F_{1} \cup\left\{v_{2}^{c}\right\}\right)$ depending on whether F_{1} contains a vertex. Then $\left(M_{P}-\right.$ $\left.\left\{\left(v_{1}, v_{2}\right)\right\}\right) \cup M_{1} \cup\left\{\left(v_{2}, v_{2}^{c}\right)\right\}$ is the desired perfect matching or almost perfect matching in $A Q_{n}-F$.

Case 3: $\left|F_{0}\right|=2 n-3$. First, assume that F_{0} is not a trivial strong matching preclusion set of $A Q_{n-1}^{0}-F_{0}$. Then, by the induction hypothesis, each of $A Q_{n-1}^{0}-F_{0}$ and $A Q_{n-1}^{1}-F_{1}$ contains a perfect matching or an almost perfect matching. If at least one of $A Q_{n-1}^{0}-F_{0}$ or $A Q_{n-1}^{1}-F_{1}$ contains a perfect matching, we are done. So, we assume that both $A Q_{n-1}^{0}-F_{0}$ and $A Q_{n-1}^{1}-F_{1}$ have almost perfect matchings. Thus F_{1} contains only one vertex. (It may contain another edge.) In particular, M_{0} is an almost perfect matching of $A Q_{n-1}^{0}-F_{0}$ missing w. If w is isolated in $A Q_{n-1}^{0}-F_{0}$, then either $\left(w, w^{x}\right)$ or $\left(w, w^{c}\right)$ is in $A Q_{n}-F$; otherwise w is isolated in $A Q_{n}-F$ and F is a basic optimal strong matching preclusion set of $A Q_{n}$, which implies F is a trivial optimal strong matching preclusion set of $A Q_{n}$ by Proposition 1.2. So, for convenience, we assume that $\left(w, w^{c}\right)$ is in $A Q_{n}-F$. Let M_{1} be a perfect matching in $A Q_{n-1}^{1}-\left(F_{1} \cup\left\{w^{c}\right\}\right)$. Then $M_{0} \cup M_{1} \cup\left\{\left(w, w^{c}\right)\right\}$ is a perfect matching in $A Q_{n}-F$. Therefore, we may assume that w is not isolated in $A Q_{n-1}^{0}-F_{0}$. This implies $A Q_{n-1}^{0}-F_{0}$ has no isolated vertices. Suppose $\left|\left\{w^{c}, w^{x},\left(w, w^{c}\right),\left(w, w^{x}\right)\right\} \cap F\right| \leq 1$. Then we may assume that $w^{c},\left(w, w^{c}\right) \notin F$. Thus $A Q_{n-1}^{1}-\left(F_{1} \cup\left\{w^{c}\right\}\right)$ contains a perfect matching M_{1}, and hence $M_{0} \cup M_{1} \cup\left\{\left(w, w^{c}\right)\right\}$ is a perfect matching in $A Q_{n}-F$. So we may assume that $\left|\left\{w^{c}, w^{x},\left(w, w^{c}\right),\left(w, w^{x}\right)\right\} \cap F\right|=2$ and neither $\left(w, w^{c}\right)$ nor $\left(w, w^{x}\right)$ are in $A Q_{n}-F$. So, without loss of generality, we may assume that $w^{c},\left(w, w^{x}\right) \in F_{1}$. We apply Proposition 3.3 to find another almost perfect matching in $A Q_{n-1}^{0}-F_{0}$ missing $y \neq w$. Now $\left|\left\{y^{c}, y^{x},\left(y, y^{c}\right),\left(y, y^{x}\right)\right\} \cap F\right| \leq 1$ and we can repeat the argument.

Henceforth, we may assume that F_{0} is a trivial strong matching preclusion set of $A Q_{n-1}^{0}$. So there exists an isolated vertex v in $A Q_{n-1}^{0}-F_{0}$ and F_{0} contains vertices that are adjacent to v or edges that are incident to v. Moreover, F_{0} contains an even number of vertices. If neither $\left(v, v^{c}\right)$ nor $\left(v, v^{x}\right)$ is in $A Q_{n}-F$, then F is basic in $A Q_{n}$ and hence trivial in $A Q_{n}-F$ by Proposition 1.2. So, for convenience, we may assume that $\left(v, v^{c}\right)$ is in $A Q_{n}-F$. Let
f_{1} and f_{2} be two elements of F_{0} and let $F_{0}^{\prime}=F_{0}-\left\{f_{1}, f_{2}\right\}$. Clearly we can pick f_{1} and f_{2} to either both be vertices or both be edges. By Theorem 2.3, $A Q_{n-1}^{0}-F_{0}^{\prime}$ contains a Hamiltonian cycle C since $\left|F_{0}^{\prime}\right|=2 n-5$. If f_{1} and f_{2} are both edges, then both are incident to v and they are in C; thus $C-\{v\}$ is a path P in $A Q_{n-1}^{0}-F_{0}$ with an odd number of vertices. If f_{1} and f_{2} are both vertices, then both are adjacent to v and they are on C; thus $C-\left\{v, f_{1}, f_{2}\right\}$ is a path P in $A Q_{n-1}^{0}-F_{0}$ with an odd number of vertices. Now P contains at least $2^{n-1}-(2 n-3)-1=2^{n-1}-2 n+2$ vertices. For at least $\left(2^{n-1}-(2 n-3)-1\right) / 2=2^{n-2}-n+1$ vertices, its deletion will separate P into two paths, each with an even number of vertices. Since $2^{n-2}-n+1 \geq 4$ as $n \geq 5$, there is one such vertex z such that $\left(z, z^{c}\right)$ is in $A Q_{n}-F$. Thus C induces a matching M_{0} in $A Q_{n-1}^{0}-F_{0}$ missing z. Now by the induction hypothesis, $A Q_{n-1}^{1}-\left(F_{1} \cup\left\{v^{c}, z^{c}\right\}\right)$ has a perfect matching or an almost perfect matching M_{1}. Then $M_{0} \cup M_{1} \cup\left\{\left(v, v^{c}\right),\left(z, z^{c}\right)\right\}$ is either a perfect matching or an almost perfect matching in $A Q_{n}-F$.

Case 4: $\left|F_{0}\right|<2 n-3$. By the induction hypothesis, $A Q_{n-1}^{0}-F_{0}$ has a perfect or an almost perfect matching. Moreover, $\left|F_{1} \cup F_{X} \cup F_{C}\right|>2$. Since $\left|F_{0}\right| \geq\left|F_{1}\right|, A Q_{n-1}-F_{1}$ also contains a perfect or an almost perfect matching. If at least one of $A Q_{n-1}^{0}-F_{0}$ and $A Q_{n-1}^{1}-F_{1}$ has a perfect matching, we are done. So, assume both $A Q_{n-1}^{0}-F_{0}$ and $A Q_{n-1}^{1}-F_{1}$ have an odd number of vertices. We consider two subcases.

Subcase $4 a:\left|F_{0}\right| \leq 2 n-5$. Since there are 2^{n-1} cross edges and 2^{n-1} complement edges, we may assume that there is at least one cross edge and one complement edge not on F as $2^{n-1}>2 n-1$ for all $n \geq 5$. We consider such a fault-free complement edge ($\left.v, v^{c}\right)$ between $A Q_{n-1}^{0}-F_{0}$ and $A Q_{n-1}^{1}-F_{1}$ where v is in $A Q_{n-1}^{0}-F_{0}$. Note that by assumption, both $A Q_{n-1}^{0}-\left(F_{0} \cup\{v\}\right)$ and $A Q_{n-1}^{1}-\left(F_{1} \cup\left\{v^{c}\right\}\right)$ contain an even number of vertices. Now, $\left|F_{0} \cup\{v\}\right|,\left|F_{1} \cup\left\{v^{c}\right\}\right| \leq 2 n-4$. So $A Q_{n-1}^{0}-\left(F_{0} \cup\{v\}\right)$ and $A Q_{n-1}^{1}-\left(F_{1} \cup\left\{v^{c}\right\}\right)$ have perfect matchings M_{0} and M_{1}, respectively. Thus $M_{0} \cup M_{1} \cup\left\{\left(v, v^{c}\right)\right\}$ is a perfect matching in $A Q_{n}-F$.

Subcase $4 b:\left|F_{0}\right|=2 n-4$. Hence $\left|F_{1} \cup F_{X} \cup F_{C}\right|=3$. We note that F_{1} contains either one vertex or three vertices. Thus $\left|F_{X} \cup F_{C}\right| \leq 2$. We start with an almost perfect matching M_{0} missing w in $A Q_{n-1}^{0}-F_{0}$. Suppose $\left|\left\{w^{c}, w^{x},\left(w, w^{c}\right),\left(w, w^{x}\right)\right\} \cap F\right| \leq 1$. Then we may assume that $w^{c},\left(w, w^{c}\right) \notin F$. Thus $A Q_{n-1}^{1}-\left(F_{1} \cup\left\{w^{c}\right\}\right)$ contains a perfect matching
M_{1}, and hence $M_{0} \cup M_{1} \cup\left\{\left(w, w^{c}\right)\right\}$ is a perfect matching in $A Q_{n}-F$. (We note that $\left|F_{1} \cup\left\{w^{c}\right\}\right| \leq 4 \leq<2 n-3$ as $n \geq 5$.) So we may assume that $\left|\left\{w^{c}, w^{x},\left(w, w^{c}\right),\left(w, w^{x}\right)\right\} \cap F\right| \geq$ 2. Thus the construction will not work. One may want to apply Proposition 3.3 to find another almost perfect matching in $A Q_{n-1}^{0}-F_{0}$ missing $y \neq w$. However, it is possible that $\left|\left\{y^{c}, y^{x},\left(y, y^{c}\right),\left(y, y^{x}\right)\right\} \cap F\right| \geq 2$. (To be precise, this happens when $w^{c}=y^{c}$ and $w^{x}=y^{c}$.) Instead, we apply Proposition 3.4. Clearly $A Q_{n-1}^{0}-F_{0}$ has no isolated vertices. If there is a forbidden 2-path $w-u-v$ in $A Q_{n-1}^{0}-F_{0}$ where both v and w are of degree 1 , then we can completely determine F_{0}. Since $\left|F_{0}\right|=2 n-4$ and F_{0} contains an odd number of vertices, F_{0} must contain exactly one edge (w, v) and $2 n-5$ vertices, each adjacent to both w and v. But such a configuration is impossible in $A Q_{n-1}^{0}$. (Otherwise, deleting these $2 n-5$ vertices together with u will disconnect the graph, which is impossible as $A Q_{n-1}^{0}$ has connectivity $2 n-3$ since $n \geq 5$.) Since we have three different almost perfect matchings in $A Q_{n-1}^{0}-F_{0}$, each missing a different vertex, we may indeed assume there is an almost perfect matching missing w in $A Q_{n-1}^{0}-F_{0}$ such that $\left|\left\{w^{c}, w^{x},\left(w, w^{c}\right),\left(w, w^{x}\right)\right\} \cap F\right| \leq 1$, so we are done.

4. Conclusion

In this paper, we studied the strong matching preclusion problem introduced in [25]. Given hypercubes are bipartite and hence not resilient under the strong matching preclusion measure as shown in [25], it is natural to consider non-bipartite variants of hypercubes. The class of augmented cubes is a natural choice due to its many attractive properties. We showed that these interconnection networks are indeed resilient under this measure.

Acknowledgements:
We would like to thank the three anonymous referees for a number of helpful comments and suggestions.

References

[1] R.C. Brigham, F. Harary, E.C. Violin, and J. Yellen. Perfect-matching preclusion, Congressus Numerantium, 174 (2005), 185-192.
[2] P. Bonneville, E. Cheng, and J. Renzi. Strong matching preclusion for the alternating group graphs, Journal of Interconnection Networks, 12 (2011), 277-298.
[3] N.-W. Chang and S.-Y. Hsieh, Conditional diagnosability of augmented cubes under the PMC Model, IEEE Transactions on Dependable and Secure Computing, 9 (2012), 46-60.
[4] E. Cheng, P. Hu, R. Jia, L. Lipták. Matching preclusion and conditional matching preclusion for bipartite interconnection networks I: sufficient conditions, Networks, 59 (2012), 349-356.
[5] E. Cheng, P. Hu, R. Jia, L. Lipták. Matching preclusion and conditional matching preclusion for bipartite interconnection networks I: Cayley graphs generated by transposition trees and hyper-stars, Networks, (2012), 357-364.
[6] E. Cheng, R. Jia, D. Lu. Matching preclusion and conditional matching preclusion for augmented cubes, Journal of Interconnection Networks, 11 (2010), 35-60
[7] E. Cheng, M.J. Lipman, L. Lipták, and D. Sherman. Conditional matching preclusion for the arrangement graph, Theoretical Computer Science, 412 (2011), 6279-6289
[8] E. Cheng, L. Lesniak, M.J. Lipman, and L. Lipták. Conditional matching preclusion sets, Information Sciences, 179 (2009), 1092-1101.
[9] E. Cheng, M.J. Lipman and L. Lipták. Matching preclusion and conditional matching preclusion for regular interconnection networks, Discrete Applied Mathematics, 160 (2012), 1936-1954.
[10] E. Cheng and L. Lipták. Matching preclusion for some interconnection networks, Networks, 50 (2007), 173-180.
[11] S.A. Choudum and V. Sunitha. Augmented Cubes, Networks, 40 (2) (2002), 302-310.
[12] A. A. Hagberg, D. A. Schult and P. J. Swart. Exploring network structure, dynamics, and function using NetworkX. Proceedings of the 7th Python in Science Conference (SciPy2008), (2008), 11-15.
[13] S.-Y. Hsieh and Y.-R. Cian. Conditional edge-fault Hamiltonicity of augmented cubes, Information Sciences, 180 (2010), 2596-2617.
[14] S.-Y. Hsieh and J.-Y. Shiu. Cycle embedding of augmented cubes, Applied Mathematics and Computation, 191 (2007), 314-319.
[15] H.-C. Hsu, L.-C. Chiang, J.J.M. Tan, Lih-Hsing Hsu, Fault Hamiltonicity of augmented cubes, Parallel Computing, 31 (2005), 131-145.
[16] L.-H. Hsu and C.-K. Lin. Graph Theory and Interconnection Networks. CRC Press, 2009.
[17] W.-S Hong and S.-Y. Hsieh, Strong diagnosability and conditional diagnosability of augmented cubes under the comparison diagnosis model, IEEE Trans. Reliability, to appear.
[18] X. Hu and H. Lou, The (conditional) matching preclusion for burnt pancake graphs, Discrete Applied Mathematics, to appear.
[19] T.-K. Li, J.J.M. Tan, and L.-H. Hsu, Hyper Hamiltonian laceability on edge fault star graph, Information Science, 165 (2004), 59-71.
[20] H. Lü, X. Li, and H. Zhang, Matching preclusion for balanced hypercubes, Theoretical Computer Science, 465 (2012), 10-20.
[21] M. Ma, G. Liu, J.M. Xu. Panconnectivity and edge-fault-tolerant pancyclicity of augmented cubes, Parallel Computing, 33 (2007), 36-42.
[22] M. Ma, G. Liu, and J.-M. Xu. The super connectivity of augmented cubes, Information Processing Letters, 106 (2008), 59-63.
[23] J.-H. Park. Matching preclusion problem in restricted HL-graphs and recursive circulant $g\left(2^{m}, 4\right)$, Journal of KIISE, 35 (2008), 60-65.
[24] J.-H. Park and S.H. Son. Conditional matching preclusion for hypercube-like interconnection networks, Theoretical Computer Science, 410 (2009), 2632-2640.
[25] J.-H. Park and I. Ihm. Strong matching preclusion, Theoretical Computer Science, 412 (2011), 64096419.
[26] S. Wang, R. Wang, S. Lin, and J. Li. Matching preclusion for k-ary n-cubes, Discrete Applied Mathematics, 158 (2010), 2066-2070.

Eddie Cheng, Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309. EMAIL: ECHENG@OAKLAND.EDU

Shalin Shah, University of Michigan, Ann Arbor, MI 48109. Email: Shalins1994@gmail.com

Vyom Shah, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093.
Email: VYom.PABLO@GMAIL.COM

Daniel E. Steffy, Department of Mathematics and Statistics, Oakland University, Rochester, MI 48309. Email: steffy@oakland.edu

[^0]: ${ }^{1}$ A graph is Hamiltonian connected if there is a Hamiltonian path between every pair of vertices.

