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Abstract. The strong matching preclusion number of a graph is the minimum number of

vertices and edges whose deletion results in a graph that has neither perfect matchings nor

almost perfect matchings. The concept was introduced by Park and Son. In this paper, we

study the strong matching preclusion problem for the augmented cube graphs. As a result,

we find smp(AQn) and classify all optimal solutions.
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1. Introduction

A perfect matching in a graph is a set of edges such that every vertex is incident with

exactly one edge in this set. An almost perfect matching in a graph is a set of edges such

that every vertex except one is incident with exactly one edge in this set, and the exceptional

vertex is incident to none. If a graph has a perfect matching, then it has an even number of

vertices; if a graph has an almost perfect matching, then it has an odd number of vertices.

The matching preclusion number of a graph G, denoted by mp(G), is the minimum number

of edges whose deletion leaves the resulting graph without a perfect matching or an almost

perfect matching. Any such optimal set is called an optimal matching preclusion set. If

G has neither a perfect matching nor an almost perfect matching, then mp(G) = 0. This

concept of matching preclusion was introduced by [1] and further studied by [4–10,23,24,26].

They introduced this concept as a measure of robustness in the event of edge failure in

interconnection networks, as well as a theoretical connection to conditional connectivity,

“changing and unchanging of invariants” and extremal graph theory. We refer the readers
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to [1] for details and additional references. In [25], the concept of strong matching preclusion

was introduced. The strong matching preclusion number of a graph G, denoted by smp(G), is

the minimum number of vertices and edges whose deletion leaves the resulting graph without

a perfect matching or an almost perfect matching. Any such optimal set is called an optimal

strong matching preclusion set.

Useful distributed processor architectures offer the advantages of improved connectivity

and reliability. An important component of such a distributed system is the system topology,

which defines the inter-processor communication architecture. Such system topology forms

the interconnection network. We refer the readers to [16] for recent progress in this area and

the references in its extensive bibliography. In certain applications, every vertex requires

a special partner at any given time and the matching preclusion number measures the ro-

bustness of this requirement in the event of link failures as indicated in [1]. Hence in these

interconnection networks, it is desirable to have the property that the only optimal matching

preclusion sets and optimal strong matching preclusion sets are those whose deletion gives

an isolated vertex in the resulting graph. Since interconnection networks are usually even,

we only consider even graphs in this paper, that is, graphs with even number of vertices.

Proposition 1.1. Let G be a graph with an even number of vertices. Then smp(G) ≤

mp(G) ≤ δ(G), where δ(G) is the minimum degree of G.

Proof. Since G is even, mp(G) is the minimum number of edges whose deletion leaves a

graph with no perfect matchings. Since deleting all edges incident to a single vertex will give

a graph with no perfect matchings, mp(G) ≤ δ(G). The claim smp(G) ≤ mp(G) is obviously

true as every matching preclusion set is a strong matching preclusion set. �

An optimal solution of the form given in the proof of Proposition 1.1 is a trivial (optimal)

matching preclusion set. Let F be an optimal strong matching preclusion set of a graph

G = (V,E). Suppose F = FV ∪ FE where FV consists of vertices and FE consists of edges.

We may assume that no element in FE is incident to an element in FV since F is optimal.

(If e ∈ FE is incident to an element of FV , then G− F = G− (F − {e}).) We call F a basic

(optimal) strong matching preclusion set if F is an optimal strong matching preclusion set

of G and G−F has an isolated vertex, that is, there exists a vertex v such that every vertex
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in FV is a neighbor of v and every edge in FE is incident to v. This includes the following

scenario: F is a basic optimal matching preclusion set and G − F is odd without almost

perfect matchings. We can further restrict this class as follows: If G − F is even and there

is a vertex v such that every vertex in FV is a neighbor of v and every edge in FE is incident

to v, then F is a trivial (optimal) strong matching preclusion set. For r-regular even graphs

we have the following relationship between these classes of preclusion sets.

Proposition 1.2 ([2]). Let r ≥ 2. Let G be an r-regular even graph. Suppose that smp(G) =

r. Then every basic strong matching preclusion set is trivial.

Hypercubes are the most basic class of interconnection networks. However, they have

shortcomings and a number of their variants were introduced to address some of the issues.

One such popular variant is the class of augmented cubes introduced in [11]. As an improve-

ment upon the hypercubes, the augmented cube graphs are designed to be superior in many

aspects. Not only do they retain some of the favorable properties of the hypercubes but

also possess some embedding properties that the hypercubes do not have. For instance, a

hypercube of the nth dimension contains cycles of all lengths from 3 to 2n whereas the hyper-

cube contains only even cycles. As shown in [25], bipartite graphs are poor interconnection

networks with respect to the strong matching preclusion property. However, augmented

cubes are not bipartite and we will show in this paper that they have good strong matching

preclusion properties.

We now define the n-dimensional augmented cube AQn as follows. Let n ≥ 1, the graph

AQn has 2n vertices, each labeled by an n-bit binary string u1u2 · · ·un such that ui ∈ {0, 1}

for all i. AQ1 is isomorphic to the complete graph K2 where one vertex is labeled by the

digit 0 and the other by 1. For n ≥ 2, AQn is defined recursively by using two copies of

(n − 1)-dimensional augmented cubes with edges between them. We first add the digit 0

to the beginning of the binary strings of all vertices in one copy of AQn−1, which will be

denoted by AQ0
n−1, and add the digit 1 to the beginning of all the vertices of the second

copy, which will be denoted by AQ1
n−1. We now describe the edges between these two copies.

Let u = 0u1u2 · · ·un−1 and v = 1v1v2 · · · vn−1 be vertices in AQ0
n−1 and AQ1

n−1, respectively.

Then u and v are adjacent if and only if one of the following conditions holds:
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(1) ui = vi for every i ≥ 1. In this case, we call the edge (u, v) a cross edge and say

u = vx and v = ux.

(2) ui 6= vi for every i ≥ 1. In this case, we call (u, v) a complement edge and denote

u = vc and v = uc.

Throughout this paper, we denote the set of cross edges and complement edges in AQn by

Xn and Cn respectively. Clearly, AQn is (2n − 1)-regular, |Cn| = |Xn| = 2n−1 and the

edges in Cn (Xn) are independent. It is well-known that AQn is vertex-transitive. Another

important fact is that the connectivity of AQn is 2n − 1 for n ≥ 4. Some recent papers

on augmented cubes include [3,6, 13–15,17,21,22]. A few examples of augmented cubes are

shown in Figure 1.

Figure 1.1. Augmented cubes of dimensions 1 through 4

2. Preliminaries

Our objective is to show that smp(AQn) = 2n− 1, which is the best possible result, and

that all optimal solutions are trivial. In this section, we present some results that will be

useful in our quest. Since the strong matching preclusion problem is a generalization of the

matching preclusion problem and the latter problem has been solved for AQn, we state the

corresponding result.
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Theorem 2.1 ( [6]). Suppose n ≥ 4. Then mp(AQn) = 2n − 1 . Moreover, every optimal

matching preclusion set is trivial.

Given that a Hamilton cycle in an even graph induces two edge-disjoint perfect matchings,

the following result uses “fault Hamiltonian” property as a sufficient condition in determining

the strong matching preclusion number.

Proposition 2.2 ( [2]). Let G be an r-regular even graph with the property that G − F is

Hamiltonian for every F ⊆ V (G) ∪ E(G) where |F | ≤ r − 2. Then smp(G) = mp(G) = r.

However, we are unaware of any relationship between such “fault Hamiltonian” property

and the classification of optimal strong matching preclusion sets. In order to apply Propo-

sition 2.2, we need Hamiltonian results for AQn. Fortunately, such a result is known.

Theorem 2.3 ( [15]). Let n ≥ 4. Suppose F ⊆ V (AQn) ∪ E(AQn). If |F | ≤ 2n − 4, then

AQn − F is Hamiltonian connected 1; if |F | ≤ 2n− 3, then AQn − F is Hamiltonian.

3. Main Result

It follows from Proposition 2.2 and Theorem 2.3 that smp(AQn) = 2n − 1 for n ≥ 4.

It remains to classify all optimal solutions. We claim that all optimal solutions are trivial.

Given the recursive structure of augmented cubes, the natural method is to use induction.

The first step is to check the base case.

Lemma 3.1. smp(AQ4) = 7. Moreover every optimal strong matching preclusion set is

trivial.

Proof. This result was verified by a computer program. The check was done using a Python

program and the NetworX package [12] for graph representation. The program verified that

for every 7-element fault sets F , unless F is trivial, AQ4 − F has a perfect matching or an

almost perfect matching. In order to reduce the number of cases that had to be checked

we note that Theorem 2.1 implies that that we may assume F contains at least one vertex.

Moreover, since AQ4 is vertex-transitive, one vertex in F can be fixed. Additionally, it can be

1A graph is Hamiltonian connected if there is a Hamiltonian path between every pair of vertices.
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assumed that no fault edge is incident with a fault vertex. In wall clock time, the computer

verification took a couple days on a modern desktop computer. �

Before we present the proof of our main result, we need a number of easy technical results.

We start with the following useful observation of augmented cubes which we will apply

without explicitly referencing it.

Proposition 3.2. Let n ≥ 3. Let u be a vertex of AQn. Then ux is adjacent to uc. Moreover,

there is a unique vertex v such that u and v are adjacent, vc = ux and vx = uc. In other

words, u, v, ux, uc form a complete graph on four vertices.

We need two more facts regarding matchings which we will now state without proof.

Proposition 3.3. Let G be a graph with no isolated vertices. Suppose that G has an almost

perfect matching M that misses vertex v. Then there exists an almost perfect matching in G

which misses a vertex other than v.

Proposition 3.4. Let G be a graph with no isolated vertices. Suppose that G has an almost-

perfect matching M that misses vertex w. If G does not contain a 2-path v− u−w in which

v and w have degree 1, then there exist almost-perfect matchings M1 and M2 in G such that

M , M1 and M2 miss different vertices.

Our main result is that every optimal conditional strong matching preclusion set in AQn

is trivial. Before proceeding with the proof we give some comments on the general strategy

that will applied. Due to the recursive structure of AQn it is natural to establish the

result by induction. In particular, given any fault set F that is not a trivial strong matching

preclusion set, we must show how to construct a perfect matching or almost perfect matching

in AQn − F . We will consider several cases regarding how the faults are distributed among

AQ0
n−1, AQ1

n−1 and the set of cross edges. If many faults are concentrated within one

of these two subgraphs, the induction hypothesis cannot be directly applied to recover a

perfect matching or almost perfect matching in that subgraph. In such cases we will remove

a set A from the fault set so that induction can be applied, building a perfect matching or

almost perfect matching in each of the subgraphs and finally using the structural properties
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of AQn to augment the matchings to form a perfect matching or almost perfect matching

in the entire graph, removing any dependence on the set A. Finally, even if the faults are

distributed more evenly between AQ0
n−1 and AQ1

n−1 some care must still be taken; if an odd

number of fault vertices appear in each half then induction will only provide an almost perfect

matching in each, the union of these must still be augmented to produce a perfect matching

in the entire graph. The art is to find the right balance in dividing the cases. This type of

case analysis is the frequent method of choice in this area as seen in [18, 20, 24–26] among

others for matching preclusion. Proofs for other properties on interconnection networks are

equally involved; for example, see [13–15,19,21].

Theorem 3.5. Let n ≥ 4. Then smp(AQn) = 2n − 1. Moreover, every optimal strong

matching preclusion set is trivial.

Proof. The claim that smp(AQn) = 2n − 1 follows from Proposition 2.2 and Theorem 2.3.

We now classify the optimal solutions. The proof is via induction. We first note that the

statement is true if n = 4 by Lemma 3.1. Let n ≥ 5 and assume that the result is true

for AQn−1. Let F ⊆ V (AQn) ∪ E(AQn) be an optimal strong matching preclusion set. As

remarked earlier, we may assume that no edge in F is incident to a vertex in F . Then, we

show that either AQn − F contains a perfect matching or an almost perfect matching, or

that F is a trivial strong matching preclusion set of AQn. Let F = FX ∪FC ∪F0 ∪F1 where

F0 and F1 denote the fault sets of AQ0
n−1 and AQ1

n−1 respectively. Similarly, FX is the set

of faulty cross edges while FC denotes the set of faulty complement edges. We may assume

that |F0| ≥ |F1|. We now divide the proof into four cases:

Case 1: |F0| = 2n−1. Then |F1∪FC∪FX | = 0. Note that AQn−F has no isolated vertices,

so we will show that it has either a perfect matching or an almost perfect matching. We

may assume that F = F0 contains vertices; otherwise, the result follows from Theorem 2.1.

We pick two elements from F0 to form A. We either pick two vertices or one vertex together

with an edge so that F0 − A contains an even number of vertices. Let F ′0 = F0 − A.

By construction, AQ0
n−1 − F ′0 is an even graph. Suppose there is an isolated vertex v1 in

AQ0
n−1 − F ′0. So every vertex in F ′0 is adjacent to v1 and every edge in F ′0 is incident to

v1. Since F ′0 has an even number of vertices and the degree of v1 in AQ0
n−1 is odd, F ′0
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contains at least one edge say, (v1, u1). If A consists of a vertex and an edge e. Then let

A′ = (A − {e}) ∪ {(v1, u1)} and it is easy to see that AQ0
n−1 − (F0 − A′) does not have an

isolated vertex, and we may choose A′ instead of A. Now suppose that A consists of two

vertices y1 and y2. (Recall that F ′0 has an even number of vertices.) If F ′0 has a vertex z,

then we may choose A′ = {y1, z} and it is easy to see that AQ0
n−1− (F0−A′) does not have

an isolated vertex. Thus we assume that F ′0 consists of edges only. Then F has two vertices

and 2n − 3 edges. We claim that AQn − F has a perfect matching. Now by the induction

hypothesis, AQ0
n−1 − {y1, y2, v1} = AQ0

n−1 − (F0 ∪ {v1}) has an almost perfect matching

M0 missing, say, w. Consider the two cross edges (v1, v
x
1 ) and (w,wx). By the induction

hypothesis, AQ1
n−1−{vx1 , wx} has a perfect matching M1. Now M0∪M1∪{(v1, vx1 ), (w,wx)}

is a perfect matching in AQn − F , as required.

Henceforth, we may assume that AQ0
n−1 − F ′0 has no isolated vertices. Recall that by

construction, AQ0
n−1−F ′0 is an even graph. So by the induction hypothesis, AQ0

n−1−F ′0 has

a perfect matching MP . We consider two subcases.

Subcase 1a: A contains distinct vertices v1, v2 in AQ0
n−1. So F has an even number of

vertices and we want to find a perfect matching in AQn − F . If v1 and v2 are adjacent then

(v1, v2) ∈MP and it is easy to extend it to a perfect matching in AQn−F . So we may assume

that MP matches v1 and v2 to the vertices v′1 and v′2, respectively in AQ0
n−1 − F ′0. Consider

the cross edges (v′1, v′x1 ) and (v′2, v
′x
2 ). By the induction hypothesis, AQ1

n−1 − {v′x1 , v′x2 } has a

perfect matching M1. Now, (MP − {(v1, v′1)(v2, v′2)}) ∪M1 ∪ {(v′1, v′x1 ), (v′2, v′x2 )} is a perfect

matching in AQn − F , as required.

Subcase 1b: A contains an edge (v, v′) and a vertex u. (By assumption, u 6∈ {v, v′} and

v, v′ 6∈ F .) So F has an odd number of vertices and we want to find an almost perfect

matching in AQn − F . Now let (u, u′) ∈ MP . We consider whether the edge (v, v′) is part

of the matching MP or not. If not, then MP − {(u, u′)} is an almost perfect matching in

AQ0
n−1 − F0 missing u′, which can be extended to an almost perfect matching in AQn − F

missing u′, by using a perfect matching in AQ1
n−1 = AQ1

n−1 − F1. Now assume instead that

(v, v′) ∈MP . So MP −{(v, v′), (u, u′)} matches every vertex in AQ0
n−1−F0 except v, v′, and

u′. Since each vertex has a complement and cross edge incident with it, we simply choose

the cross edges and match v and v′ to the vertices vx and v′x in AQ1
n−1−F1. Since |F1| = 0,
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it follows from the induction hypothesis that AQ1
n−1 − {vx, v′x} has a perfect matching M1.

Furthermore, (MP − {(v, v′), (u, u′)}) ∪M1 ∪ {(v, vx)(v′, v′x)} is an almost perfect matching

in AQn − F missing u′, so we are done.

Case 2: |F0| = 2n − 2. Then |F1 ∪ FC ∪ FX | = 1. Note that AQn − F has no isolated

vertices, so we will show that it has either a perfect matching or an almost perfect matching.

Case 2a: F0 contains only vertices. We consider two possibilities. The first possibility

is that the unique element in F1 ∪ FC ∪ FX is an edge. Then let A be a set containing

two elements of F0, say u and v. By the induction hypothesis, AQ0
n−1 − (F0 − A) has a

perfect matching M0. If (u, v) is an edge and it is in M0, then it is easy to extend M0 to

a perfect matching in AQn − F . So we may assume otherwise, and that (u, u′), (v, v′) ∈

M0. Since F1 ∪ FC ∪ FX contains exactly one edge, either {(u′, u′x), (v′, v′x)} ∩ F = ∅ or

{(u′, u′c), (v′, v′c)} ∩ F = ∅. we may assume that (u′, u′x) and (v′, v′x) are not in F . Now

by the induction hypothesis, AQ1
n−1 − (F1 ∪ {u′x, v′x}) has a perfect matching M1. Then

(M0 − {(u, u′), (v, v′)}) ∪M1 ∪ {(u′, u′x), (v′, v′x)} is a perfect matching in AQn − F . The

second possibility is the unique element in F1∪FC ∪FX is a vertex y in AQ1
n−1. We consider

the following scenrios.

• Suppose yc, yx ∈ F0. Let A = {yc, yx}. By the induction hypothesis, AQ0
n−1 −

(F0 − A) has a perfect matching M0. If (yc, yx) is in M0, then it is easy to extend

M0 to an almost perfect matching in AQn − F . So we may assume otherwise, and

that (yc, u′), (yx, v′) ∈ M0. Clearly neither u′ nor v′ is adjacent to y. So we may

assume that (u′, u′x) and (v′, v′x) are in AQn − F . Now by the induction hypothesis,

AQ1
n−1−(F1∪{u′x, v′x}) = AQ1

n−1−({y}∪{u′x, v′x}) has an almost perfect matching

M1. Then (M0 − {(yc, u′), (yx, v′)}) ∪M1 ∪ {(u′, u′x), (v′, v′x)} is an almost perfect

matching in AQn − F .

• Suppose exactly one of yc and yx is in F0. Without loss of generality, we may assume

that yc ∈ F0 and yx 6∈ F0. Let v be a vertex in F0 that is neither yc nor yx. Let

A = {yc, v}. By the induction hypothesis, AQ0
n−1 − (F0 −A) has a perfect matching

M0. If (yc, v) is an edge, and it is in M0, then it is easy to extend M0 to an almost

perfect matching in AQn − F . So we may assume that (yc, u′), (v, v′) ∈ M0. By
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construction, at most one of u′ and v′ is adjacent to y. So we may apply the usual

argument.

• Suppose yc, yx 6∈ F0. Then let A be a set containing two elements of F0, say u and v.

By the induction hypothesis, AQ0
n−1−(F0−A) has a perfect matchingM0. If (u, v) is

an edge, and it is inM0, then it is easy to extendM0 to an almost perfect matching in

AQn−F . So we may assume otherwise, and that (u, u′), (v, v′) ∈M0. If at most one

of u′ and v′ is adjacent to y, we may apply the usual argument. Otherwise {u′, v′} =

{yc, yx} and hence u′ is adjacent to v′. Thus, (M0 − {(u, u′), (v, v′)}) ∪ {(u′, v′)} is

a perfect matching in AQ0
n−1 − F0 and it is easy to extend it to an almost perfect

matching in AQn − F .

Case 2b: F0 has at least one edge. If F0 has an even number of vertices, then let A be

a set containing an edge from F0; otherwise let A be a set containing a vertex from F0.

Let F ′0 = F0 − A. By construction, AQ0
n−1 − F ′0 is an even graph. Suppose there is an

isolated vertex v1 in AQ0
n−1 − F ′0. So every vertex in F ′0 is adjacent to v1 and every edge

in F ′0 is incident to v1. Since F ′0 has an even number of vertices and the degree of v1 in

AQ0
n−1 is odd, F ′0 contains at least one edge say, (v1, u1). If A consists of an edge e, then

let A′ = (A − {e}) ∪ {(v1, u1)} and it is easy to see that AQ0
n−1 − (F0 − A′) does not have

isolated vertices, and we may choose A′ instead of A. Now suppose that A consists of a

vertex y. By construction, F ′0 has an even number of vertices. If F ′0 has a vertex z, then we

may choose A′ = {z} and it is easy to see that AQ0
n−1− (F0−A′) does not have any isolated

vertices. Thus we assume that F ′0 consists of edges only. Then F0 has one vertex, namely, y.

By the induction hypothesis, AQ0
n−1−{y, v1} = AQ0

n−1− (F0∪{v1}) has a perfect matching

M0. If the unique element in F1 ∪ FC ∪ FX is an edge, then F has one vertex, and we claim

that AQn−F has an almost perfect matching. Now M0 together with a perfect matching in

AQ1
n−1−F1 will be a desired almost perfect matching in AQn−F missing v1. Now suppose

the unique element in F1∪FC ∪FX is a vertex (in AQ1
n−1), say w1. Then F has two vertices,

and we claim that AQn − F has a perfect matching. Clearly w1 cannot be both vx1 and vc1,

so we may assume that it is not vx1 . Let M1 be a perfect matching in AQ1
n−1−{vx1 , w1} Then

M0 ∪M1 ∪ {(v1, vx1 )} is a perfect matching in AQn − F , as required.
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Henceforth, we may assume that AQ0
n−1 − F ′0 has no isolated vertices. Recall that by

construction, AQ0
n−1−F ′0 is an even graph. So by the induction hypothesis, AQ0

n−1−F ′0 has

a perfect matching MP . We consider two subcases.

Subcase 2b(i): The element in A is the edge (v1, v2) in AQ0
n−1. We note that if (v1, v2) 6∈

MP , then it is easy to find a perfect matching or an almost perfect matching in AQn − F .

So we may assume that (v1, v2) ∈ MP . Since |F1 ∪ FC ∪ FX | = 1, we claim that we can

match v1 and v2 to vertices in the graph AQ1
n−1 − F1. If our claim is correct, then we may

assume that (v1, v
c
1) and (v2, v

c
2) are edges in AQn − F . Let M1 be a perfect matching or

an almost perfect matching in AQ1
n−1 − (F1 ∪ {vc1, vc2}) depending on whether F1 contains a

vertex. Then (MP − {(v1, v2)}) ∪M1 ∪ {(v1, vc1), (v2, vc2)} is the desired perfect matching or

almost perfect matching in AQn − F . Now, our claim is clearly true if the unique element

in F1 ∪ FC ∪ FX is an edge. Suppose the unique element in F1 ∪ FC ∪ FX is the vertex y

in AQ1
n−1. Then the claim is still true (by using either cross edges or complement edges)

unless y is adjacent to both v1 and v2. In this case, we may assume that y = vx1 and y = vc2.

Since the element in A is an edge, F0 must contain an even number of vertices. Thus F0 has

an even number of edges and hence at least two edges. The natural argument is to choose

another edge from F0 to form A instead of using (v1, v2). However, we have already assumed

that such an edge is chosen so that AQ0
n−1 − (F0 − A) has no isolated vertices. So care

must be taken. If such an exchange produces an isolated vertex, then we may assume that

the isolated vertex is v1. If there is another edge (v1, v3) belonging to F0, then we can use

A′ = {(v1, v3)} instead. Now it is easy to see that AQ0
n−1− (F0−A) has no isolated vertices

and v3 is not adjacent to y. So we can match v1 and v3 to vertices in the graph AQ1
n−1−F1.

So if our claim is not correct, then F0 consists of two edges, one of them is (v1, v2), and

2n−4 neighbors of v1, except v2. Moreover, the unique element in F1∪FC ∪FX is the vertex

y in AQ1
n−1, and y is adjacent to v1 and v2. We may assume that vc1 6∈ F . (So y = vx1 .) We

will use a different construction. Let w, z ∈ F0, both neighbours of v. Let F ′′0 = F0−{w, z}.

By the induction hypothesis, AQ0
n−1 − F ′′0 has a perfect matching M0. So we may assume

that (v1, w), (z, z
′) ∈ M0. By the induction hypothesis, there is a perfect matching M1 in

AQ1
n−1−{y, vc}. Now (M0−{(v1, w), (z, z′)})∪M1∪{(v1, vc1)} is an almost perfect matching

in AQn − F missing z′.
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Subcase 2b (ii): The element in A is the vertex v1 in AQ0
n−1. Let (v1, v2) ∈ MP . Since

|F1 ∪ FC ∪ FX | = 1 and we may use either cross edges or complementary edges, we may

assume that (v2, v
c
2) is in AQn − F . Let M1 be a perfect matching or an almost perfect

matching in AQ1
n−1 − (F1 ∪ {vc2}) depending on whether F1 contains a vertex. Then (MP −

{(v1, v2)}) ∪M1 ∪ {(v2, vc2)} is the desired perfect matching or almost perfect matching in

AQn − F .

Case 3: |F0| = 2n− 3. First, assume that F0 is not a trivial strong matching preclusion

set of AQ0
n−1−F0. Then, by the induction hypothesis, each of AQ0

n−1−F0 and AQ1
n−1−F1

contains a perfect matching or an almost perfect matching. If at least one of AQ0
n−1−F0 or

AQ1
n−1−F1 contains a perfect matching, we are done. So, we assume that both AQ0

n−1−F0

and AQ1
n−1 − F1 have almost perfect matchings. Thus F1 contains only one vertex. (It

may contain another edge.) In particular, M0 is an almost perfect matching of AQ0
n−1 − F0

missing w. If w is isolated in AQ0
n−1 − F0, then either (w,wx) or (w,wc) is in AQn − F ;

otherwise w is isolated in AQn − F and F is a basic optimal strong matching preclusion

set of AQn, which implies F is a trivial optimal strong matching preclusion set of AQn

by Proposition 1.2. So, for convenience, we assume that (w,wc) is in AQn − F . Let M1

be a perfect matching in AQ1
n−1 − (F1 ∪ {wc}). Then M0 ∪ M1 ∪ {(w,wc)} is a perfect

matching in AQn−F . Therefore, we may assume that w is not isolated in AQ0
n−1−F0. This

implies AQ0
n−1 − F0 has no isolated vertices. Suppose |{wc, wx, (w,wc), (w,wx)} ∩ F | ≤ 1.

Then we may assume that wc, (w,wc) 6∈ F . Thus AQ1
n−1 − (F1 ∪ {wc}) contains a perfect

matching M1, and hence M0 ∪M1 ∪ {(w,wc)} is a perfect matching in AQn − F . So we

may assume that |{wc, wx, (w,wc), (w,wx)} ∩ F | = 2 and neither (w,wc) nor (w,wx) are in

AQn − F . So, without loss of generality, we may assume that wc, (w,wx) ∈ F1. We apply

Proposition 3.3 to find another almost perfect matching in AQ0
n−1−F0 missing y 6= w. Now

|{yc, yx, (y, yc), (y, yx)} ∩ F | ≤ 1 and we can repeat the argument.

Henceforth, we may assume that F0 is a trivial strong matching preclusion set of AQ0
n−1.

So there exists an isolated vertex v in AQ0
n−1−F0 and F0 contains vertices that are adjacent

to v or edges that are incident to v. Moreover, F0 contains an even number of vertices. If

neither (v, vc) nor (v, vx) is in AQn−F , then F is basic in AQn and hence trivial in AQn−F

by Proposition 1.2. So, for convenience, we may assume that (v, vc) is in AQn − F . Let
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f1 and f2 be two elements of F0 and let F ′0 = F0 − {f1, f2}. Clearly we can pick f1 and

f2 to either both be vertices or both be edges. By Theorem 2.3, AQ0
n−1 − F ′0 contains a

Hamiltonian cycle C since |F ′0| = 2n− 5. If f1 and f2 are both edges, then both are incident

to v and they are in C; thus C − {v} is a path P in AQ0
n−1 − F0 with an odd number of

vertices. If f1 and f2 are both vertices, then both are adjacent to v and they are on C; thus

C−{v, f1, f2} is a path P in AQ0
n−1−F0 with an odd number of vertices. Now P contains at

least 2n−1−(2n−3)−1 = 2n−1−2n+2 vertices. For at least (2n−1−(2n−3)−1)/2 = 2n−2−n+1

vertices, its deletion will separate P into two paths, each with an even number of vertices.

Since 2n−2 − n+ 1 ≥ 4 as n ≥ 5, there is one such vertex z such that (z, zc) is in AQn − F .

Thus C induces a matching M0 in AQ0
n−1−F0 missing z. Now by the induction hypothesis,

AQ1
n−1 − (F1 ∪ {vc, zc}) has a perfect matching or an almost perfect matching M1. Then

M0 ∪M1 ∪ {(v, vc), (z, zc)} is either a perfect matching or an almost perfect matching in

AQn − F .

Case 4: |F0| < 2n−3. By the induction hypothesis, AQ0
n−1−F0 has a perfect or an almost

perfect matching. Moreover, |F1∪FX ∪FC | > 2. Since |F0| ≥ |F1|, AQn−1−F1 also contains

a perfect or an almost perfect matching. If at least one of AQ0
n−1 − F0 and AQ1

n−1 − F1 has

a perfect matching, we are done. So, assume both AQ0
n−1−F0 and AQ1

n−1−F1 have an odd

number of vertices. We consider two subcases.

Subcase 4a: |F0| ≤ 2n − 5. Since there are 2n−1 cross edges and 2n−1 complement edges,

we may assume that there is at least one cross edge and one complement edge not on F as

2n−1 > 2n− 1 for all n ≥ 5. We consider such a fault-free complement edge (v, vc) between

AQ0
n−1 − F0 and AQ1

n−1 − F1 where v is in AQ0
n−1 − F0. Note that by assumption, both

AQ0
n−1 − (F0 ∪ {v}) and AQ1

n−1 − (F1 ∪ {vc}) contain an even number of vertices. Now,

|F0 ∪ {v}|, |F1 ∪ {vc}| ≤ 2n − 4. So AQ0
n−1 − (F0 ∪ {v}) and AQ1

n−1 − (F1 ∪ {vc}) have

perfect matchings M0 and M1, respectively. Thus M0 ∪M1 ∪ {(v, vc)} is a perfect matching

in AQn − F .

Subcase 4b: |F0| = 2n − 4. Hence |F1 ∪ FX ∪ FC | = 3. We note that F1 contains either

one vertex or three vertices. Thus |FX ∪FC | ≤ 2. We start with an almost perfect matching

M0 missing w in AQ0
n−1 − F0. Suppose |{wc, wx, (w,wc), (w,wx)} ∩ F | ≤ 1. Then we

may assume that wc, (w,wc) 6∈ F . Thus AQ1
n−1 − (F1 ∪ {wc}) contains a perfect matching
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M1, and hence M0 ∪ M1 ∪ {(w,wc)} is a perfect matching in AQn − F . (We note that

|F1∪{wc}| ≤ 4 ≤< 2n−3 as n ≥ 5.) So we may assume that |{wc, wx, (w,wc), (w,wx)}∩F | ≥

2. Thus the construction will not work. One may want to apply Proposition 3.3 to find

another almost perfect matching in AQ0
n−1 − F0 missing y 6= w. However, it is possible that

|{yc, yx, (y, yc), (y, yx)} ∩ F | ≥ 2. (To be precise, this happens when wc = yc and wx = yc.)

Instead, we apply Proposition 3.4. Clearly AQ0
n−1−F0 has no isolated vertices. If there is a

forbidden 2-path w− u− v in AQ0
n−1−F0 where both v and w are of degree 1, then we can

completely determine F0. Since |F0| = 2n − 4 and F0 contains an odd number of vertices,

F0 must contain exactly one edge (w, v) and 2n− 5 vertices, each adjacent to both w and v.

But such a configuration is impossible in AQ0
n−1. (Otherwise, deleting these 2n− 5 vertices

together with u will disconnect the graph, which is impossible as AQ0
n−1 has connectivity

2n− 3 since n ≥ 5.) Since we have three different almost perfect matchings in AQ0
n−1 − F0,

each missing a different vertex, we may indeed assume there is an almost perfect matching

missing w in AQ0
n−1 − F0 such that |{wc, wx, (w,wc), (w,wx)} ∩ F | ≤ 1, so we are done. �

4. Conclusion

In this paper, we studied the strong matching preclusion problem introduced in [25].

Given hypercubes are bipartite and hence not resilient under the strong matching preclusion

measure as shown in [25], it is natural to consider non-bipartite variants of hypercubes.

The class of augmented cubes is a natural choice due to its many attractive properties. We

showed that these interconnection networks are indeed resilient under this measure.
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