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Abstract

Many methods have been developed to symbolically solve
systems of linear equations over the rational numbers. A
common approach is to use p-adic lifting or iterative refine-
ment to build a modular or approximate solution, then ap-
ply rational number reconstruction. An upper bound can
be computed on the number of iterations these algorithms
must perform before applying rational reconstruction. In
practice such bounds can be conservative. Output sensitive
lifting is the technique of performing rational reconstruction
at intermediate steps of the algorithm and verifying correct-
ness which allows the possibility of early termination when
the solution size is small. In this paper we show how using
an appropriate output sensitive lifting strategy can improve
several algorithms. We show this procedure to be compu-
tationally effective and introduce a variant of the iterative-
refinement method that incorporates warm starts into the
rational reconstruction procedure.

1 Introduction

Solving rational or integer linear systems of equations is a
well developed area of symbolic computation. Dixon [9] gave
an effective procedure for solving systems exactly by com-
puting x̂ = A−1b mod pk through p-adic lifting and apply-
ing rational reconstruction to recover the exact rational so-
lution. Wiedemann’s black-box method for solving systems
of equations over a finite field can also be used along with
p-adic lifting or the Chinese Remainder Algorithm to solve
systems in the sparse setting [16, 36]. Alternate techniques
include calling a fixed precision numerical solver within an
iterative refinement routine to find an extended precision so-
lution x̂ ≈ A−1b, sufficient for rational reconstruction to be
applied [31, 33]. Others have further developed and analyzed
these methods [6, 7, 11, 13, 22, 23].

A core component of these techniques is rational num-
ber reconstruction, which allows an exact rational solution
to be recovered from either a modular or approximate solu-
tion. We define the bitsize of a nonzero rational number p/q
to be bitsize(p/q) = dlog(|pq|)e. For a rational vector v we
will define size(v) = maxi bitsize(ni/d) where n/d = v is a
representation of v using an integer vector n and a common
denominator d. In order to reconstruct a rational solution
x from a modular solution, the system of equations must
be solved modulo a number M , the size of which depends
on the final solution size. Similarly, if a rational solution is
to be reconstructed from an approximate solution, the level
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of approximation depends on the size of the final solution.
The solution vector is unknown before solving the system
so an upper bound on its size is computed to guide the ra-
tional reconstruction procedure. For an integer system of
equations Ax = b, Cramer’s rule and the Hadamard deter-
minant bound imply that a solution vector has size bounded
by log(‖A‖2n−1

2 ‖b‖2). This bound can often be excessive,
leading to unnecessary computation, both in the number of
lifting loops that must be performed, and in the cost of per-
forming rational reconstruction on large integers.

Output sensitive lifting is the technique of attempting
rational reconstruction at intermediate steps of the algo-
rithm with the possibility of identifying the solution early
and avoiding unnecessary lifting/refinement loops. The term
output sensitive lifting is used by Chen and Storjohann [6, 7]
and is incorporated into their algorithms. The idea of out-
put sensitive lifting has also been used in several other set-
tings, such as the computation of determinants by Kaltofen
[15] where it is referred to as early termination. Output
sensitive lifting was also studied in [5] for solving systems of
equations over cyclotomic fields. Use of output sensitive lift-
ing can provide both theoretical and practical improvements
when solving systems of equations exactly. It is applicable
in both the dense and sparse settings.

The commonly used bounds can be weak for several rea-
sons. Cramer’s rule tells us that the denominator of a so-
lution to an integer system Ax = b will divide det(A) and
the Hadamard bound gives det(A) ≤ ‖A‖n2 . While tight in
some cases, the Hadamard bound is often weak; this is ex-
perimentally and probabilistically studied in [1]. Even if the
determinant is well approximated by the Hadamard bound,
or calculated exactly, it only provides an upper bound on
the solution denominator size and there are many situations
in which solutions will not meet this bound. Systems of
equations may have special structure leading to small solu-
tion size, or integral solutions. In [8] it was found that in
systems of equations arising from linear programming appli-
cations, the solution bitsize was often much lower than this
bound. In such cases, application of output sensitive lifting
has a huge impact on solution times.

The size of the solution to a system of equations also
depends on the right hand side. A matrix which has very
complex solutions for particular right hand side vectors will
have trivial or uncomplicated solutions for others. This is
one way in which exact precision linear algebra differs sig-
nificantly from numerical linear algebra. If a matrix can
be successfully factored or inverted numerically, then solv-
ing the system for different right hand sides, represented in
machine precision, will require almost identical amounts of
computation. When solving a system exactly over the ratio-
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nal numbers, varying the right hand side can have a drastic
effect on the size of the solution and solve time.

This paper studies output sensitive techniques applied to
two related classes of algorithms for solving linear systems.
The first class of algorithm we consider is the p-adic lifting
based strategy of Dixon [9] and the second algorithm is the
iterative-refinement method developed by Wan [33]. Both
algorithms have an iterative structure and are later defined
as Algorithms 2 and 4. We will use the terminology of p-adic
lifting and lifting when describing and referencing the Dixon
algorithm because it constructs a modular p-adic solution
from the bottom up in order to determine a rational solu-
tion. We will use the terminology of iterative refinement or
refinement to describe Wan’s Algorithm because it is based
on iteratively refining an approximate solution, constructing
an approximate solution in a top down manner. The similar
structure of the Algorithms of Dixon and Wan allows output
sensitive lifting to be applied in a similar way in both cases.

In Section 2 we present background material in rational
reconstruction and give some related results. In Section 3 we
review Dixon’s method and show how it is impacted by ap-
plying output sensitive lifting. In Section 4 we describe two
output sensitive versions of the iterative-refinement method,
one of which incorporates warm starts for rational recon-
struction. Section 5 presents computational results and Sec-
tion 6 contains our conclusions.

2 Rational Reconstruction

2.1 Background
Rational reconstruction is a necessary component of all the
algorithms described in this paper. We briefly describe ra-
tional reconstruction and some related background material.
The following well known result appears in [28] as Corollary
6.3a.

Theorem 2.1. There exists a polynomial algorithm which,
for a given rational number α and natural number Bd tests
if there exists a rational number p/q with 1 ≤ q ≤ Bd and
|α − p/q| < 1/(2B2

d), and if so, finds this (unique) rational
number.

If an upper bound Bd is computed for the denomi-
nators of the components of x and a vector x̂ satisfying
|x̂−x|∞ < 1/(2B2

d) is computed, this theorem can be applied
component-wise to x̂ to compute the exact solution x. The-
orem 2.1 is used for this purpose in the iterative-refinement
method later described as Algorithm 4.

The following result is given, in more generality, as The-
orem 5.26 in [32] and is analogous to Theorem 2.1.

Theorem 2.2. There exists a polynomial algorithm which,
for given natural numbers n, M , Bn, Bd, with 2BnBd ≤M
tests if there exists a rational number p/q with gcd(p, q) = 1,
|p| < Bn and 1 ≤ q < Bd such that p = nq mod M , and if
so, finds this (unique) rational number.

Using this result a rational system of equations can be
solved by scaling it to be integral, computing a solution to
the system modulo an appropriate integer M and recon-
structing the exact rational solution component-wise. Theo-
rem 2.2 is used for this purpose in Dixon’s Algorithm which
is later described as Algorithm 2.

In both of the preceding theorems, the algorithms to re-
construct rational numbers rely on the Extended Euclidean

Algorithm (EEA) to compute continued fraction conver-
gents. The standard Euclidean Algorithm computes the
greatest common divisor of integers m,n by repeatedly cal-
culating the remainder of integer divisions. The EEA records
additional information along the way, including the con-
tinued fraction expansion of m/n which is computed as a
byproduct of the integer divisions. The continued fraction
convergents provide a sequence of increasingly accurate ra-
tional approximations. They are best approximations in the
sense that each convergent is closer to m/n than any number
with smaller denominator. We use [a0; a1, . . . , ak] to denote
the continued fraction representation of a rational number
m/n, and we will call the rational number pi

qi
representing

[a0; a1, . . . , ai] the ith convergent of m/n.

Algorithm 1 Euclidean Algorithm

Input: integers m,n
r0 := n, r1 := m, i := 1
while ri 6= 0 do
ri+1 := ri−1 mod ri
i := i+ 1

end while
l := i− 1
Return: rl=gcd(m,n)

Algorithm 1 gives a description of the Euclidean Algo-
rithm. The EEA will perform the same operations as the
Euclidean Algorithm and its output will include the remain-
der sequence r0, . . . , rl in addition to the quotient sequence

a0, . . . , al−1, where ai :=
j

ri
ri+1

k
and the matrix sequence

defined by:

Q0 =

„
1 0
0 1

«
and Qi = Qi−1

„
ai−1 1

1 0

«
∀i ≥ 1.

There are several equivalent ways to define the matrix
sequence and this notation is the most convenient for our
purposes. We now state some basic results concerning con-
tinued fractions; these appear (with varying notation) in ei-
ther Section 3.2 of [32] or Section 12.2 of [26].

Remark 2.3. Consider the rational number m/n for inte-
gers m and n ≥ 1, let ri be the output of Algorithm 1 and
ai, Qi be as defined above. Also let pi

qi
be the ith convergent

of r, and define pi−2 = 0, qi−2 = 1, pi−1 = 1, qi−1 = 0.
Then the following relations hold:

1. For k ≥ 0, pk = akpk−1 +pk−2 and qk = akqk−1 +qk−2.

2.
˛̨̨
pi
qi
− pi+1

qi+1

˛̨̨
= 1

qiqi+1
.

3. If m
n
> 0 then p1

q1
< p3

q3
< · · · < m

n
< · · · < p4

q4
< p2

q2
.

4. If m
n
< 0 then p2

q2
< p4

q4
< · · · < m

n
< · · · < p3

q3
< p1

q1
.

5. Qi =

„
pi−1 pi−2

qi−1 qi−2

«
∀i ≥ 0

6.

„
m
n

«
= Qi

„
ri
ri+1

«
.

7.

„
ri
ri+1

«
= Q−1

i

„
m
n

«
= (−1)i

„
qi−2 −pi−2

−qi−1 pi−1

«„
m
n

«
.
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A straightforward implementation of rational reconstruc-
tion will require O(d2) bit operations where d is the num-
ber of bits used to represent the input. Recent articles in-
cluding [20, 24, 25] describe rational reconstruction algo-
rithms that use O(M(d) log(d)) bit operations where M(d)
is the cost of multiplication of integers with size bounded
by 2d. Using fast multiplication of [27] we have M(d) =
O(d log(d) log log(d)). This speedup of rational reconstruc-
tion is achieved using similar ideas to the fast Extended Eu-
clidean Algorithm.

2.2 Certifying Solution Vectors
We now consider some sufficient conditions that can be ef-
ficiently checked to certify correctness of a rational system
of equations. A lemma similar to the following was given
by [4] and was used in [6, 7]. It can be used to certify
correctness of reconstructed solutions while requiring little
computation. Throughout the rest of the paper we will use
‖A‖max = max |aij |.

Lemma 2.4. Suppose A is a square integer matrix, y, b are
integer vectors, and d ≥ 0 is an integer. If for some integer
M

Ay = bd mod M and

max(d‖b‖∞, n‖A‖max‖y‖∞) < M/2

then Ay = bd.

Proof. Suppose the conditions hold but Ay − bd 6= 0. Since
Ay − bd must be integral and Ay = bd mod M we have
‖Ay − bd‖∞ ≥M . But we also have

‖Ay − bd‖∞ ≤ ‖Ay‖∞ + ‖bd‖∞

≤ 2 max(d‖b‖∞, n‖A‖max‖y‖∞) < M

which gives a contradiction.

We also make the observation that the statement of this
lemma can be adjusted by replacing n‖A‖max‖y‖∞ with
‖AT ‖2‖y‖2, and the proof will carry through identically by
the Cauchy-Schwartz inequality.

Corollary 2.5. Suppose A, b, y, d satisfy the conditions of
Lemma 2.4. If Ay = bd then d 6= 0 implies x = y/d solves
Ax = b, and d = 0 implies singularity of A.

Suppose a solution to a system of equations is computed
modulo pk for some integer k and rational reconstruction
is attempted without knowledge of valid bounds, by using
guessed bounds such as Bn = Bd = d

p
pk/2e as in Theo-

rem 2.2. In such a case, since Bn, Bd are not known to be
valid, the reconstructed solution may be incorrect. Lemma
2.4 gives a very easily checked condition to certify correct-
ness of the solution. If the solution is known to satisfy the
modular system of equations, then checking the remaining
conditions of the theorem requires only a few multiplications,
in contrast to a high precision matrix-vector multiplication
required to evaluate the linear equations exactly.

We now provide an analogue for the case when rational
numbers are reconstructed from approximate solutions.

Lemma 2.6. Suppose A is a square integer matrix, b is an
integer vector and x is a rational vector that is known to
satisfy ‖x− A−1b‖∞ < ε. If x = y/d, where y is an integer
vector, and d is an integer satisfying d < 1/(n‖A‖maxε), then
Ax = b.

Proof. Suppose x̂ = A−1b and Ax 6= b. Since Ay − bd 6= 0
is integral, ‖Ay − bd‖∞ ≥ 1. Next d < 1/(n‖A‖maxε) and
‖x − x̂‖∞ ≤ ε implies ‖x − x̂‖∞ < 1/(nd‖A‖max). So we
have

‖Ay − bd‖∞ = d‖Ax− b‖∞ = d‖A(x− x̂)‖∞

≤ dn‖A‖max‖x− x̂‖∞ < 1

which gives a contradiction.

The preceding lemma implies that if a rational solution
x is reconstructed from an approximate solution, where the
common denominator of the vector x is small enough, and its
accuracy is known to satisfy a required bound, then its cor-
rectness can be certified without evaluating the equations.

While Lemmas 2.4 and 2.6 provide conditions to quickly
certify correctness of solutions that have been reconstructed,
their conditions are not necessary, and a correct rational
solution may fail to satisfy them. The following example
illustrates that this gap can depend on both the dimension
and size of the data entries.

Example 2.7. Suppose A = aIn for an integer a and In
is the n dimensional identity matrix. For an n dimensional
vector b = [a, a, . . . , a]T , x = y/d = [1, 1, . . . , 1]T /1 is a so-
lution to Ax = b for all positive integers a, n. After solving
this system modulo M ≥ 2 for a number M not dividing a,
the correct solution will be reconstructed successfully. How-
ever, the conditions in Lemma 2.4 will not be met unless a
solution is computed modulo M ≥ 2na.

This example also can be applied to Lemma 2.6, where we
see that any value of ε ≤ 1/2 is sufficient for the correct solu-
tion to be determined using rational reconstruction, however
the conditions are not satisfied unless the system is solved
to within an error ε ≤ 1/(2na).

Therefore, to design an algorithm that will compute and
certify the correct rational solution as soon as possible,
these techniques have both practical and theoretical draw-
backs. We also mention that if an incorrect solution vector
is checked for correctness by evaluating the linear equations
of the system, its incorrectness can likely be discovered after
evaluating only a small number of the equations. Therefore,
although evaluating all of the linear equations could be com-
putationally expensive, we expect identifying incorrectness
of solutions to be considerably faster.

We now provide necessary and sufficient conditions that
can be used to verify correctness of a reconstructed solution.
While these conditions are not as easily checked as those in
the previously discussed results they can be easier to verify
than evaluating the equations using full precision.

Lemma 2.8. Suppose A is a square integer matrix, y, b are
integer vectors, d is a positive integer and x = y/d. Then
Ax = b if and only if there exists an integer M ≥ 1 such
both of the following conditions hold.

Ay = bd mod M (1)

‖Ax− b‖∞ < M/d (2)

Proof. If Ax = b then for any integer M ≥ 1 the modular
equation must hold and ‖Ax − b‖∞ = 0 < M/d. For the
reverse direction suppose Ax 6= b, then for any positive in-
teger M Ay = bd mod M implies ‖Ay − bd‖∞ ≥M , which
means ‖Ax − b‖∞ ≥ M/d so both conditions can not hold
at once.
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Thus, if solution y/d is known to satisfy Ay = bd
mod M , to check Ax = b it is necessary and sufficient that
‖Ax− b‖∞ < M/d, which can be verified using approxima-
tions or interval arithmetic. Similarly, if we have computed
a rational solution x = y/d satisfying ‖Ax − b‖∞ < ε, this
result tells us that instead of explicitly checking Ax = b, it
is sufficient to select any positive integer M ≥ d/ε and ver-
ify that Ay = bd mod M . Evaluating this modular system
will require less computation than verifying the full precision
equations, especially when d/ε is reasonably small.

Related results also appear in [14] where it is shown,
under some assumptions, that if the solutions at two (or
more) consecutive lifting steps are the same there is a high
probability that they give the correct answer.

2.3 Warm Starting Rational Reconstruc-
tion

For the algorithm presented in Section 4 it is of interest to
understand how the output of the Extended Euclidean Al-
gorithm, and rational reconstruction, can change when its
input is slightly perturbed. Understanding this will help us
to perform warm starts for the rational reconstruction algo-
rithm corresponding to Theorem 2.1. The following appears
as Theorem A in [19]; related results appear in [20, 24].

Theorem 2.9. Let
pk−1
qk−1

, pk
qk

be two consecutive convergents

to a number β. Then these fractions are consecutive conver-
gents to α if and only if˛̨̨̨

α− pk
qk

˛̨̨̨
<

1

qk(qk + qk−1)
.

This theorem gives conditions which can be used to ver-
ify that a sequence of continued fraction approximations is
correct up to a certain point. The following result applies
this theorem to the framework of rational reconstruction.

Theorem 2.10. Let x, α be a rational numbers satisfying
|x − α| < 1/(2B2) for some integer B. Suppose pk

qk
is any

continued fraction convergent of x such that qk < B. If
k ≥ 3 then either

pk−2
qk−2

,
pk−1
qk−1

or
pk−1
qk−1

, pk
qk

are two consecutive

convergents of α.

Proof. Without loss of generality we may assume
pk−1
qk−1

≤
x ≤ pk

qk
. First suppose |α− pk−1

qk−1
| < 1

qkqk−1
. Then by Remark

2.3 if k ≥ 1, qk ≥ qk−1 + qk−2, so we have˛̨̨̨
α− pk−1

qk−1

˛̨̨̨
<

1

qkqk−1
≤ 1

qk−1(qk−1 + qk−2)

and by Theorem 2.9,
pk−2
qk−2

,
pk−1
qk−1

are two consecutive conver-

gents of α. So we may assume that |α − pk−1
qk−1
| ≥ 1

qkqk−1
.

From | pk
qk
− pk−1

qk−1
| = 1

qkqk−1
and

pk−1
qk−1

≤ x it follows that
pk
qk
≤ α. Finally |x− α| < 1

2B2 and x ≤ pk
qk

gives˛̨̨̨
α− pk

qk

˛̨̨̨
<

1

2B2
≤ 1

2q2
k

≤ 1

qk(qk + qk−1)
.

By Theorem 2.9 we have
pk−1
qk−1

, pk
qk

as two consecutive con-

vergents of α, which establishes our desired result.

Thus, if rational reconstruction is performed using an ap-
proximate input x ≈ α, the intermediate steps of the EEA
will be correct in all but possibly the last step. If x is later
refined to a more accurate approximation of α then in order
to apply rational reconstruction again, we can start the al-
gorithm where it left off, with the need for at most one step
backward.

3 Output Sensitive Lifting for Dixon’s
Method

Algorithm 2 describes Dixon’s well known algorithm for solv-
ing an integer system of equations Ax = b [9]. This algo-
rithm is sometimes referred to as the p-adic lifting algorithm
for solving linear systems and related ideas are considered
by other authors [17, 21, 34].

Algorithm 2 Standard Dixon Algorithm

Input: A, b, p {Ax = b is system to be solved, p is a
prime not dividing det(A)}
Compute A−1 mod p
x̂ := 0, i := 0, d := b,B := 2‖A‖2n−1

2 ‖b‖2
while pi < B do
y := A−1d mod p
x̂ := x̂+ ypi {This will set x̂ = A−1b mod pi+1 }
d :=

“
d−Ay
p

”
i := i+ 1

end while
x:=Reconstruct(x̂, pi)
Return: x {Solution to system}

His algorithm has three steps; first an inverse of A mod p
is computed, second p-adic lifting is used to construct a so-
lution mod pk, then the rational solution is reconstructed.
Dixon showed the following bound regarding the complex-
ity of his algorithm assuming Ax = b is an n dimensional
square system of equations and ‖A‖max, ‖b‖∞ are bounded
by a constant. In his analysis he also assumed that a prime
p not dividing det(A) and bounded by a constant not de-
pending on A was found (such a prime might not exist).

Theorem 3.1. Let Ax = b be an n dimensional square
nonsingular integer system of equations. If the entries of
A, b are bounded by a constant and p is bounded by a con-
stant then Algorithm 2 will find the rational solution using
O(n3 log2(n)) bit operations.

We will review how this bound was obtained. The inver-
sion of A mod p can be done with O(n3) operations. There
will be O(log(B)) lifting steps. At the ith iteration of the
algorithm, entries of x̂ will be in the range [0, pi+1 − 1] and
d is updated to equal (b − Ax̂)/pi. Therefore d will have
integral entries with bitsize O(logn). Updating y, x̂ and d
in each lifting step is accomplished with O(n2 log(n)) bit
operations. This gives a total cost of O(n2 log(n) log(B))
over all lifting steps. The rational number reconstruc-
tion, using the Extended Euclidean Algorithm component-
wise, has a cost of O(n log2(B)) operations. We also have
log(B) = log(2‖A‖2n−1

2 ‖b‖2) = O(n log(n)), so the bit com-
plexity is

O(n3 + n2 log(n) log(B) + n log2(B)) = O(n3 log2 n).
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In practice a word sized prime that does not divide det(A)
can often be identified by randomly selecting a prime. In
the case that a prime is selected that does divide det(A) this
can be recognized in the first step of the algorithm when
computingA−1 mod p. In general the size of p will depend on
the dimension and size of entries in A. In [30] an algorithm
to determine a prime p with size O(logn + log log ‖A‖max)
is analyzed in Corollary 36.

More general complexity analysis of Dixon’s method is
given by Mulders and Storjohann as Theorem 20 in [22],
which does not assume constant bounds on A, b and p. In
a later paper [23] the same authors also analyze Dixon’s
algorithm using fast arithmetic as Proposition 31.

Algorithm 3 describes the output sensitive version of
Dixon’s Algorithm. In this variant of the algorithm, instead
of waiting until the modulus of the intermediate solution x̂
exceeds the bound B, rational reconstruction is attempted
at intermediate steps. Success of the rational reconstruction
is not theoretically guaranteed at these steps, so the recon-
structed solution must be verified. The bit complexity of the
output sensitive Dixon algorithm will depend on which steps
are specified as reconstruction steps. Here we will make the
choice that reconstruction is attempted at a geometric fre-
quency, namely at steps i where i = 2k for some integer k.
This choice of frequency is important. For example, if re-
construction is attempted at predetermined constant length
intervals the bit complexity of the algorithm would change.
We will use log(S) = size(A−1b) to represent the size of the
solution. Recall that we have defined size() of a vector to be
the maximum bitsize over all of its entries after all entries are
represented with a common denominator. We also know that
the numerator and denominator bounds from Cramer’s rule
and the Hadamard bound gave us 2S ≤ B = 2‖A‖2n−1

2 ‖b‖2.
We will now give an analysis of the complexity of Algorithm
3 in terms of the system dimension n and the solution size
log(S). For simplicity of presentation we assume entries of
A, b, p are bounded by a constant.

Algorithm 3 Output Sensitive Dixon Algorithm

Input: A, b, p {Ax = b is system to be solved, p is a
prime not dividing det(A)}
Compute A−1 mod p
x̂ := 0, i := 0, d := b
while solution not found do
y := A−1d mod p
x̂ := x̂+ ypi

if reconstruction step then
x :=Reconstruct(x̂, pi+1) {Using Theorem 2.2

component-wise with Bn = Bd =
p
pi+1/2}

Check Ax = b
end if

d :=
“
d−Ay
p

”
i := i+ 1

end while
Return: x {Solution to system}

Theorem 3.2. Let Ax = b be an n dimensional square non-
singular integer system of equations and suppose the entries
of A, b are bounded by a constant. Also suppose that p is a
prime bounded by a constant which does not divide det(A)
and log(S) = size(A−1b). Then the Output Sensitive Dixon
Algorithm terminates after O(n3 + n2 log(n) log(S)) bit op-
erations.

Proof. Reducing A mod p and computing A−1 mod p will
require O(n3) operations.

Next we will show that the number of loops is O(log(S)).
In the ith loop of the algorithm a solution to the system mod-
ulo pi+1 will be constructed. By Theorem 2.2 the reconstruc-
tion routine is guaranteed to succeed when both Bn and Bd
exceed the (unknown) quantity S. Therefore if reconstruc-

tion is attempted at a loop where Bn = Bd =
p
pi+1/2 ≥ S,

or i ≥ 2(log(S)/ log(p)), the correct solution is ensured to be
correctly reconstructed. The geometric choice of reconstruc-
tion frequency ensures we will perform at most two times the
necessary number of loops beyond the earliest loop where i
is large enough to correctly reconstruct the solution.

The number of operations performed in each loop, ex-
cluding the cost of the rational reconstruction attempts and
the solution check, is O(n2 log(n)) as in the standard Dixon
Algorithm. The computational cost of performing ratio-
nal reconstruction while in loop i is O(ni2) because each
component will have bitsize O(i). In order to check the
reconstructed candidate solution x we will first transform
to a representation having a common denominator d to get
x = z/d. Then if z or d exceed the numerator and denomi-
nator bounds Bn, Bd the check is aborted, otherwise the so-
lution is checked by computing Az and bd. The cost of com-
puting Az and bd will be O(n2 log(n)i) since it requires per-
forming an integer matrix-vector multiplication where the
entries of the matrix are bounded by a constant, and the
entries of the vector are bounded by 2O(i). Thus, since re-
construction will be attempted and verified at steps i = 2k

for k = 1, 2, . . . , O(log log(S)) we have the following bound
on the combined cost of rational reconstruction and solution
checking:

O(log log(S))X
k=1

“
O(n(2k)2) +O(n2 log(n)2k)

”
= O(n log2(S) + n2 log(n) log(S)).

Using log(S) = O(n log(n)) we have the following
bound on the total number of bit operations O(n3 +
n2 log(n) log(S) + n log2(S) + n2 log(n) log(S)) = O(n3 +
n2 log(n) log(S)).

We see that this algorithm gives an improved run time
if the solution size is small is small. Moreover, under the
assumption that sizes of A, b, p are bounded by a constant,
log(S) = O(n logn) so this matches the worst case bound of
O(n3 log2 n) given in Theorem 3.1.

4 Output Sensitive Iterative Refine-
ment

The iterative-refinement method solves linear systems of
equations over the rational numbers by calculating a highly
accurate approximate solution and applying Theorem 2.1 to
reconstruct the rational solution. The approximate solution
is calculated and iteratively refined using numerical meth-
ods.

This general idea was used by [31], and was later im-
proved upon by Wan [33] who showed how to more effi-
ciently keep track of the error by rounding and adjusting the
approximate solution. In order to guarantee correctness of
the reconstructed solution, Cramer’s rule and the Hadamard
bound are used, as in Dixon’s method, to bound the size of
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Algorithm 4 Iterative Refinement Method

Input: A, b {Ax = b is system to be solved}
Compute numerical LU factorization of A
N := 0 {Numerator of the approximation}
D := 1 {Common denominator of approximation}
B := 2‖A‖2n2
∆ := b {Error measure of solution at each step}
while D < B do

Compute x̂ :≈ A−1∆ {Using numerical LU
factorization}
Choose an integer α < ||∆||∞

||∆−Ax̂||∞ where αx̂ is within

floating point range
Set x̄ ≈ αx̂ {Round to the nearest integer}
∆ := α∆−Ax̄ {Update the residual}
D := D × α {Update the denominator}
N := N × α+ x̄

end while
Reconstruct x using N/D
Return: x {Solution to system}

the rational solutions. Algorithm 4 gives a description of
the iterative-refinement method similar to the algorithm of
Wan [33]. All versions of the iterative-refinement method
described in this section require the assumption that the
matrix can be successfully numerically factored or inverted.
The iterative structure of this algorithm is similar to Dixon’s
method and rational reconstruction can also be attempted at
intermediate steps to make it output sensitive. This strategy
is described as Algorithm 5.

Algorithm 5 Output Sensitive I. R. Method

Input: A, b {Ax = b is system to be solved}
Compute numerical LU factorization of A
N := 0 {Numerator of the approximation}
D := 1 {Common denominator of approximation}
∆ := b {Error measure of solution at each step}
while solution not found do

Compute x̂ :≈ A−1∆ {Using numerical LU
factorization}
Choose an integer α < ||∆||∞

||∆−Ax̂||∞ where αx̂ is within

floating point range
Set x̄ ≈ αx̂ {Round to the nearest integer}
∆ := α∆−Ax̄ {Update the residual}
D := D × α {Update the denominator}
N := N × α+ x̄
if reconstruction step then
x :=Reconstruct(N,D) {Using Theorem 2.1 and

Bd =
p
D/2}

Check Ax = b
end if

end while
Return: x {Solution to system}

If rational reconstruction is attempted component-wise
at an intermediate step of the iterative-refinement algorithm
then by Theorem 2.10 some steps of the EEA will be correct,
even if the reconstructed solution is not correct. Therefore
the strategy of Algorithm 5 may recompute the same leading
sequence of convergents each time rational reconstruction is
attempted. Algorithm 6 describes a procedure to warm start
rational reconstruction within the output sensitive iterative-

refinement method in order to avoid this recomputation. It
differs from the previous algorithms discussed because it in-
terweaves the rational reconstruction routine with the re-
finement steps instead of calling rational reconstruction as a
separable routine.

Algorithm 6 O.S. I.R. Method with Warm Starts

Input: A, b {Ax = b is system to be solved}
Compute numerical LU factorization of A
D := 1 {Common denominator of approximation}
(Qi0, r

i
0, r

i
1) = (I2, 0, 1) ∀i ∈ 1, . . . , dim(A) {Here

Qik, r
i
k, r

i
k+1 represents the elements of the matrix and re-

mainder sequence of the EEA of the ith solution compo-
nent after k iterations of the EEA.}
∆ := b {Error measure of solution at each step}
while solution not found do

Compute x̂ :≈ A−1∆ {Using numerical LU
factorization}
Choose an integer α < ||∆||∞

||∆−Ax̂||∞ where αx̂ is within

floating point range
Set x̄ ≈ αx̂ {Round to the nearest integer}
∆ := α∆−Ax̄ {Update the residual}
D := D × α {Update the common denominator of
approximation}
Update Qik, r

i
k, r

i
k+1∀i using x̄i, α and Lemma 4.1

Perform additional steps of EEA on (Qik, r
i
k, r

i
k+1) main-

taining qik−1 <
p
D/2

{The intermediate reconstructed solution x is defined
by xi = pik−1/q

i
k−1.}

Check Ax = b {Use full precision check
if step in loop is a power of 2, otherwise use the quick
check of Lemma 2.6}

end while
Return: x {Solution to system}

After performing each step of the while loop we obtain a
refinement of the approximation of the solution to the sys-
tem of equations. We will use Ni/D to represent the approx-
imation of the ith component, and note that this notation
does not appear in the algorithm description because N/D
is stored in terms of its EEA matrix and remainder sequence
instead of explicitly. For the discussion here we assume that
the numerical solver is providing enough correct solution bits
that at any step of the algorithm |Ni/D − (A−1b)i| < 1/D
holds.

For the ith component of the solution Qik, r
i
k, r

i
k+1 stores

the matrix and remainder sequence representation of Ni/D
after k steps of the EEA. Recall that in Remark 2.3 we
saw that the matrix sequence stores the continued frac-
tion convergents of a number. These values are initialized
as (Qi0, r

i
0, r

i
1) = (I2, 0, 1). By Theorem 2.10 if |Ni/D −

(A−1b)i| < 1/D and if we update the matrix sequence main-

taining qik−1 <
p
D/2 then either Qik or Qik−1 will be a

correct element of the EEA matrix sequence for the true
value of the ith solution component (A−1b)i. Thus, if k ≥ 1
we can be safe and backtrack to Qik−1 which will be in the
matrix sequence when the EEA is applied to the numerator
and denominator of (A−1b)i.

After performing each refinement step two steps must be
done to update the continued fraction approximation of the
final solution. First Qik, r

i
k, r

i
k+1 must be updated to reflect

the updated representation of the approximation Ni/D. As-
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suming Qik is found in the matrix sequence for Ni/D we only
need to update the remainders rik, r

i
k+1. A formula to make

this update is given in Lemma 4.1. Secondly, once rik, r
i
k+1

are updated, additional iterations of the EEA are performed
to refine the matrix sequence. This is done component-wise
so the progress of the EEA on each component will be dif-
ferent. Steps of the EEA will be performed, starting with
Qik, r

i
k, r

i
k+1, maintaining qik−1 <

p
D/2. After performing

these operations xi = pik−1/q
i
k−1 will give the continued frac-

tion approximation of the approximate solution Ni/D with

denominator not exceeding
p
D/2.

The following lemma gives an explicit formula for updat-
ing the remainders rik, r

i
k+1 when the approximate solution

is refined.

Lemma 4.1. Let N̂i/D̂ be a rational number and suppose
at the kth step of the EEA the following have been computed

Q̂k =

„
p̂k−1 p̂k−2

q̂k−1 q̂k−2

«
, r̂k, r̂k+1.

Let Ni/D be a rational number for which Qk = Q̂k is known
to be a matrix encountered in the application of the EEA.

Then if Ni
D

= N̂iα+x̄i

D̂α
, the following relation gives the values

of ri, ri+1, the remainders encountered at the kth step of the
EEA when applied to Ni, D:„

rk
rk+1

«
= α

„
r̂k
r̂k+1

«
+ (−1)kx̄i

„
q̂k−2

−q̂k−1

«
.

Proof. By Remark 2.3 we have the following„
rk
rk+1

«
= Q−1

k

„
Ni
D

«
= αQ−1

k

„
N̂i
D̂

«
+ x̄iQ

−1
k

„
1
0

«

= α

„
r̂k
r̂k+1

«
+ (−1)kx̄i

„
q̂k−2

−q̂k−1

«
which gives our proposed formula.

This gives a way to update the remainder sequence,
ri, ri+1, from r̂i, r̂i+1 without requiring to access Ni or D.
The only required information is a scale factor α and dif-
ference x̄i, which might have a much smaller representation
than Ni or D. After applying Lemma 4.1 to update the re-
mainders more steps of the EEA can be performed advanc-
ing the matrix sequence and further refining the continued
fraction approximation of each component Ni/D

As noted earlier, the numerator of the approximate so-
lution, which was stored as N in Algorithms 4 and 5, is no
longer explicitly stored by Algorithm 6. Instead, it is rep-
resented by the matrix sequence and remainders which are
updated at each step. From Remark 2.3 we see the approxi-
mation of the ith solution component, represented by Ni/D,
is stored as „

Ni
D

«
= Qik

„
rik
rik+1

«
.

In order to check the correctness of the candidate so-
lutions computed in Algorithm 6 the quick check given by
Lemma 2.6 can be used at every step, this check is fast to
compute but may fail to recognize a correct solution. A
more expensive but always correct exact check can be done
at loops that are done in a geometric progression ensuring

the algorithm terminates after O(log(S)) loops. Within this
framework there are other choices that could be made re-
garding how to check the solutions. A suggestion of one
referee was to entirely skip the quick checks by Lemma 2.6
and only update Qik, r

i
k, r

i
k+1 at loops that are a power of

two, or some other geometric frequency, to take advantage
of asymptotically faster steps of the EEA and performing
the full precision checks at these steps.

Remark 4.2. If A is an n × n matrix which can success-
fully be numerically factored, the entries of A, b are bounded
by a constant and log(S) = size(A−1b) then the output sen-
sitive versions of the iterative-refinement methods described
as Algorithm 5 and 6 will both terminate with the correct
solution to Ax = b after performing O(n3 +n2 log(n) log(S))
bit operations.

The structure of the algorithm here mirrors the Output
Sensitive Dixon’s method which was analyzed in the previ-
ous section in Theorem 3.2, so we only note some differences
here. In [33] Wan gave a proof of correctness and an anal-
ysis of his algorithm which is similar to Algorithm 4. We
have stated this result as an informal remark and refer the
reader to Wan’s paper [33] to see how one can make a more
rigorous statement of this type involving a numerical solver.
The only significant difference between Algorithm 4 and its
output sensitive counterparts is how and when the rational
reconstruction is performed. Moreover, by using theorem
2.10 to warm start the rational reconstruction at each step
Algorithm 6 will perform asymptotically the same amount
of computation for rational reconstruction as Algorithm 5.
In Algorithm 6 the reconstructed solution is available at ev-
ery step of the while loop and thus the quick check to certify
Ax = b given by Lemma 2.6 can be done at every loop of the
refinement procedure. The more computationally expensive
check will only be performed at a geometric frequency.

We note that for p-adic lifting, the idea of using warm
starts for the EEA can not be applied in the same way.
Iterative refinement computes an approximate solution in a
top down fashion, with each refinement making smaller and
smaller adjustments leaving the leading digits unchanged.
For p-adic lifting, the solution is computed from the bottom
up, and the leading digits of the modular solution change at
every iteration.

5 Computational Results

In this section we present computational results to compare
the performance of the methods described in this paper.
Source codes for the methods tested here and scripts to gen-
erate the test problems are freely available at

www.isye.gatech.edu/~dsteffy/rational/

for any research purposes.

5.1 Implementation
Output sensitive lifting can be applied in both the sparse
and dense case. It can be applied in both the modular (i.e.
Dixon) or numerical (iterative refinement) settings. For our
computations we have chosen to evaluate it in the dense
setting using both a Dixon based solver and an iterative-
refinement based solver. The reason we have chosen to con-
sider both these methods is that the Dixon based solver can
be tested on some well known problems which are too ill-
conditioned for a numerical solver to handle. Testing the
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iterative-refinement solver allows us to evaluate the warm
starts within the iterative-refinement method as described
in Algorithm 6 in comparison with the standard and output
sensitive methods (Algorithms 4 and 5). Moreover, in [8]
output sensitive lifting was tested within many methods in
the sparse setting and found it to be highly successful for a
large class of applied problems.

Our implementation of Dixon’s algorithm is written in
C/C++ and uses the FFLAS and FFPACK packages [12],
which provide fast BLAS and LAPACK routines for finite
fields in C++. We implemented both the standard Dixon
algorithm as described in Algorithm 2 along with the out-
put sensitive Dixon algorithm as given in Algorithm 3. For
Dixon’s Algorithm any non-integral inputs are scaled to be
integral before solving.

The implementation of the iterative-refinement methods
are written in C and uses the BLAS [10, 18] and LAPACK
[2] routines for the dense numerical linear algebra. We have
used the ATLAS package [35] which provides automatically
tuned BLAS and a subset of LAPACK routines. We imple-
mented three strategies for rational reconstruction for the
iterative-refinement method. First, we use the Hadamard
bound as in Algorithm 4; second, we attempt reconstruction
at loops which are a power of two using the framework of
Algorithm 5; third, we implement a version of Algorithm 6
where the partially reconstructed solutions are stored from
step to step and reused.

We use a straightforward implementation of rational
reconstruction, employing a technique referred to as the
DLCM method in Section 3.2.3 of [8]. This technique is also
used by Chen and Storjohann [6, 7] and others [16, 29]. The
DLCM method amounts to storing the LCM of the denom-
inators of the reconstructed solution vector and using this
information to accelerate component-wise reconstruction by
fixing factors of the component denominators or terminat-
ing early if this common denominator grows too large. For
Dixon’s method we apply the DLCM method as it is de-
scribed in [6, 7, 8]. For the iterative-refinement methods we
use a modified strategy because the warm starts in Algo-
rithm 6 store the work of the EEA from step to step mak-
ing it incompatible with the DLCM method. The modified
strategy we use is to reconstruct the candidate exact solution
component-wise and keep track of the common denominator
of the re-constructed components during each reconstruc-
tion step. If this common denominator of the reconstructed
components exceeds the denominator bound (

p
D/2 where

D is the denominator of the approximate solution) then no
further steps of the EEA are performed and more refinement
steps are performed. This gives a minor slowdown to Algo-
rithms 4 and 5 but allows a side by side comparison between
them and Algorithm 6. An recent study of vector rational
number reconstruction can be found in [3].

We also comment that the purpose of our implementa-
tions were to accurately compare ideas described in this ar-
ticle in a straightforward implementation. The implementa-
tions are not expected to be competitive with state of the
art solvers such as LinBox [11] or IML [6, 7].

5.2 Test Problems
The goal of our computational experiments is two fold. First,
we seek to evaluate how output sensitive lifting can acceler-
ate linear system solving on problems for which the bitsize of
the final solution is small, problems where it should have a
distinct advantage. Secondly, we seek to compare the speed

of the standard and output sensitive algorithms on problems
whose output is very large, to verify that in the worst case
there is no significant drawback to using output sensitive
lifting.

In order to meet these goals and adequately compare the
algorithms we chose a variety of problems in our test set.
Table 1 provides descriptions of the classes of dense matrices
which we use to test our methods.

Table 1: Description of test matrices

Matrix Type Construction

Hadamard Dn for
n = 2k

D1 = (1) and Dn =
 

Dn/2 Dn/2
Dn/2 −Dn/2

!

Random Rn {Rn}ij ∈ [−100, 100] if i 6= j, and
{Rn}ii = 10, 000

Hilbert Hn {Hn}ij = 1/(i+ j − 1)
Vandermonde Vn {Vn}ij = ij−1

Lehmer Ln {Ln}ij = min(i, j)/max(i, j)

There was some difficulty in choosing which problems
to consider. It is difficult to find an explicit linear system
of equations for which the size of the solution meets the
Hadamard bound exactly. The Hadamard matrices have de-
terminants which meet the Hadamard determinant bound
tightly det(Dn) = 2n−1. However, when using these matri-
ces the solution size will not be as large because the inverse
matrix D−1

n = 1
n
Dn has small entries.

We also consider randomly generated dense matrices. For
these matrices we choose the entries uniformly at random
from integers with absolute value at most 100, and assign
the diagonal entries all to 10,000 to ensure numerical sta-
bility. The Hilbert matrix is a frequently cited example of
an ill-conditioned matrix, and it is impossibly difficult for
numerical solvers to tackle, even at low dimension. We use
a type of Vandermonde matrix with the rows generated by
increasing integers as described in the table. The Lehmer
matrices are also a well known class of ill-conditioned ma-
trices.

Choosing right hand sides for the systems of equations is
also an important consideration. Some computational lin-
ear algebra studies use arbitrary right hand sides, such as
setting b equal to the sum of the columns in A, giving a
solution of all ones. While in the numerical setting, this
is a perfectly reasonable right hand side to consider, it is
not appropriate in our case because the algorithms studied
here have run times depending on the size of the solutions.
For our evaluations we will use the unit vector e1 as the
right hand side for each system. This is a reasonable choice
because it corresponds to computing the first row of the in-
verse matrix, which should be adequately representative of
the typical solution complexity.

5.3 Computations
Computations were performed on a Linux machine with a 2.4
GHz AMD Opteron 250 processor and 4GB of RAM. Table 2
compares the standard Dixon algorithm and the output sen-
sitive Dixon algorithm on the entire problem set; the solve
times are given in seconds. In addition to the total solution
time for each method we include a profile of how time was
spent in different stages of the algorithm. The solution time
is divided between the following three tasks: the finite field

8



D. Steffy

Table 2: Solve times for Dixon algorithms in seconds

Problem Details Standard Dixon (Alg. 2) Output Sensitive Dixon (Alg. 3)

Matrix log(B) log(S) Total Factor Lift R.R. Total Factor Lifting R.R.& S.V.

D1024 12284 10 28.34 0.42 27.91 0.01 1.12 0.43 0.07 0.62
D2048 24572 11 242.65 2.74 239.89 0.01 5.51 2.71 0.29 2.51
D4096 57339 12 2273.67 20.01 2253.61 0.05 32.68 21.20 1.28 10.19

R500 13988 13271 9.98 0.19 9.63 0.17 9.96 0.17 9.60 0.18
R1000 27988 26557 75.51 0.86 73.68 0.97 75.26 0.90 73.33 1.02
R2000 55988 53137 582.20 4.34 571.98 5.88 582.87 4.43 572.35 6.09

H500 1432292 1269 5916.43 0.17 5916.02 0.24 6.40 0.18 5.89 0.33
H1000 5742567 2540 204945.46 0.84 204941.63 2.99 84.96 0.84 82.15 1.98
H2000 22997129 5084 - - - - 1218.51 4.37 1196.43 17.71

V100 130944 1046 13.72 0.01 13.68 0.03 0.17 0.01 0.07 0.09
V300 1474141 4079 4049.52 0.06 4046.52 2.93 8.74 0.06 4.62 4.05
V500 4469528 7530 67972.23 0.18 67947.28 24.77 61.02 0.18 36.56 24.28

L500 727997 3 218.41 0.19 218.20 0.02 0.33 0.19 0.01 0.13
L1000 2885996 3 3043.20 0.88 3042.15 0.17 1.48 0.91 0.03 0.54
L2000 11531996 3 52873.03 4.36 52867.53 1.14 6.87 4.58 0.14 2.15

matrix factorization, the p-adic lifting steps, and the ratio-
nal reconstruction (including solution verification). Solution
verification is only performed when rational reconstruction
is attempted by the output sensitive methods at loops where
the correctness is not guaranteed. Whenever pi surpasses the
bound B solution checks are not necessary. Due to system
load and other factors solution times vary with each run,
therefore these timings should be considered as approximate
values, the reason times are shown to 1/100 of a second is to
allow for a comparison between the subroutines. The table
also includes the log of the Hadamard bound on the solution
size log(B) = log(2‖A‖2n−1

2 ‖b‖2), along with the actual size
log(S) = size(A−1b) ≤ log(B)− 1.

The first observation we make from Table 2 is that the
Hadamard bound was a very weak upper bound on the solu-
tion size on all problem classes except the randomly gener-
ated matrices. On the set of randomly generated matrices,
the Hadamard bound did provide a fairly tight bound on
the final solution bitsize. In these cases the output sensi-
tive algorithm performs the same number of loops as the
standard Dixon algorithm and also performs additional re-
construction attempts at intermediate steps. Even on these
problems, the output sensitive Dixon algorithm has approx-
imately the same solution times as the standard Dixon algo-
rithm. This demonstrates that even if the Hadamard bound
is nearly tight the output sensitive lifting only performs a
small amount of additional computation. The occurs be-
cause at steps where incorrect solutions are generated, this
incorrectness can be recognized very quickly. The first possi-
bility is that the rational reconstruction routine aborts early
if the common denominator of the reconstructed components
grows too large. The second possibility is that the algorithm
reconstructs an incorrect solution vector and checks its cor-
rectness by evaluating the system of equations. In this sec-
ond case it will likely only evaluate a very small number of
equations to recognize its incorrectness, which could be much
less costly than evaluating the full system as was accounted
for in the worst case complexity analysis of Theorem 3.2.
For the remainder of the problem set the output sensitive
method has an advantage of several orders of magnitude.

The lifting steps that were avoided gave a significant reduc-
tion in the computational costs. We also notice on some
problems with smaller solution size the cost of rational re-
construction and solution verification is larger for the output
sensitive method than the standard methods due to the final
solution verification.

Results for the iterative-refinement based solvers using
Algorithms 4, 5 and 6 on the Hadamard and random ma-
trices are given in Table 3. The Hilbert, Vandermonde and
Lehmer matrices are were too numerically difficult for the
LAPACK routines to handle so they are not included in the
results. We observe from Table 3 that the performance ratio

Table 3: Solve times for iterative-refinement in seconds

Lifting Strategy (Algorithm Number)

Matrix Std. (4) O.S. (5) O.S. & W.S. (6)

D1024 8.57 0.91 0.92
D2048 71.10 4.49 4.57
D4096 965.87 27.39 27.17

R500 12.12 12.07 12.46
R1000 94.52 94.60 98.25
R2000 763.50 756.89 798.66

between the standard and output sensitive lifting strategies
of Algorithms 4 and 5 is similar to their related versions
of the Dixon method compared in Table 2. We also ob-
serve that Algorithm 6 did not give any improvement over
the basic output sensitive lifting strategy given in Algorithm
5. The extra bookkeeping required in Algorithm 6 may be
more costly than any benefits gained by saving the informa-
tion for these problems. In comparison to the breakdown for
Dixon’s method in Table 2 for the factorization, refinement
and reconstruction there was extra cost was incurred by the
reconstruction steps in these algorithms due to the less effi-
cient handling of the DLCM method that was done to allow
a side by side comparison between Algorithms 4, 5 and 6.
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The main purpose of these computations was to study the
effectiveness of output sensitive methods, and not to com-
pare Dixon’s algorithm vs. the iterative-refinement method.
However, we can make some observations about their rel-
ative speed. Before making the direct comparison we note
one difference in the implementation: as described in Section
5.1 the implementations handle the DLCM method differ-
ently because the version of this algorithm used in Dixon’s
method is not compatible with the warm starts in Algorithm
6. If Algorithm 5 is adjusted to use the same version of the
DLCM method as Algorithm 3 we observed that the solution
times of Algorithm 5 were often faster on our test set, but
not by orders of magnitude. Therefore we conclude that the
iterative-refinement method can be faster than Dixon’s Al-
gorithm when both are applicable, but not by a huge margin.
We also remark that tuning parameters such as how large
of a prime p is used for p-adic lifting or how many digits
of accuracy the numerical solver has in iterative refinement
can effect the solution times. Other recent studies [8, 33] ob-
served the iterative-refinement method to be slightly faster
but not by a huge order of magnitude.

6 Conclusion

Our study reinforces a conclusion that has already been ob-
served in practice: output sensitive lifting can improve algo-
rithms for symbolically solving systems of linear equations.
We show that output sensitive algorithms can allow for sys-
tems of rational linear equations to be solved very quickly
when the final solutions are small in size, while maintaining
the same worst case bit complexity even when solutions are
large in size. Tests were performed on several types of dense
systems where output sensitive lifting was observed to give
significant improvements on problems with small solution
size, without noticeable slowdown even when the solution
size was large.

We introduced a strategy to warm start the rational
reconstruction portion of the iterative-refinement method.
While this did not further improve on the other output sen-
sitive version of iterative refinement there may be other set-
tings in which warm starting the EEA or rational reconstruc-
tion could prove helpful.

We have primarily focused on output sensitive lifting ap-
plied to dense systems of equations; this technique is also
fully applicable in the sparse setting. Our results suggest
that any exact precision linear system solver relying on iter-
ative methods should employ output sensitive lifting.
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Appendix

More general complexity analysis of Dixon’s method is given
by Mulders and Storjohann as Theorem 20 in [22], which
does not assume constant bounds on A, b and p.

Theorem 6.1. The p-adic lifting algorithm for solving a
system of integer equations exactly is correct and given input
A, b, p it will terminate after

O(n3(logn+ log ‖A‖max + log p)2 + n log2 ‖b‖∞)

bit operations.

Their statement of the algorithm differs slightly from Al-
gorithm 2 but follows the same basic structure. Mulders
and Storjohann prove this theorem using standard arith-
metic and in a later paper [23] the they also give a detailed
complexity analysis of Dixon’s method using fast arithmetic
as Proposition 31.

We will now analyze Algorithm 3 without assuming con-
stant size bounds on entries of A, b and p. This is similar to
the proof of Theorem 20 in [22].

Theorem 6.2. Let Ax = b be a square nonsingular integer
system of equations and a prime p is known not dividing
det(A) and log(S) = size(A−1b) then the Output Sensitive
Dixon Algorithm terminates after

O
`
n3 log2(p) + n2 log(‖A‖max) log(p) + n log(S) log(‖b‖∞)

+n2 log(S)(logn+ log ‖A‖max + log p)
´

bit operations.

Proof. We will bound the complexity of this algorithm in
three steps. First we look at the initial cost of reducing A
mod p and computing its mod p inverse. Second we con-
sider the cost of all of the lifting steps. Third, we consider
the combined cost of performing rational reconstruction in-
cluding checking the intermediate solutions.

Inversion: Reduction of A mod p and computation of
A−1 mod p can be done using

O(n2 log(‖A‖max) log(p) + n3 log2(p))

bit operations.
Lifting: The number of loops the algorithm will perform

is O(log(S)/ log(p)). We will now count the cost of each
lifting loop.

At the ith step of the algorithm d = (b −
A(A−1b mod pi))/pi and since pi must divide b −
A(A−1b mod pi) this implies d always has entries with
absolute value at most ‖b‖∞ + n‖A‖max. To compute
y := A−1d mod p we reduce d mod p which will cost
O(n log(p)(log ‖b‖∞+ logn+ log ‖A‖max)) and then doing a
mod p matrix-vector multiplication will cost O(n2 log2(p)).

Now we bound the cost of computing x̂ := x̂ + ypi in
each loop. Observe that x̂ will require at most O(logS)
bits to represent it at any stage of the algorithm. pi can
be updated and stored from step to step and will always
have size O(log(S)). y will have size O(log p). The domi-
nating cost will be the multiplication of ypi which will cost
O(n log(S) log(p)).

Finally we consider the cost of updating d := (d−Ay)/p.
Since y has entries with absolute value at most p, and en-
tries of Ay are at most n‖A‖maxp, the cost of the multi-
plications and additions required to compute Ay is bounded

by O(n2(log(‖A‖max) log(p)+logn)). Subtracting Ay from d
will cost O(n(logn+log p+log ‖A‖max+log ‖b‖∞)) and then
dividing by p will have cost O(n log(p)(log ‖b‖∞ + logn +
log ‖A‖max + log p)).

Combining terms we have the following bound on the
computation required in each loop:

O(n log(p) log(S) + n log(p)(logn+ log ‖b‖∞)

+n2(log(‖A‖max) log(p) + logn+ log2(p))

Multiplying the total loop cost by the number of loops
O(log(S)/ log(p)) can be bounded by:

O(n log2(S) + n log(S) log(‖b‖∞)

+n2 log(S)(log(‖A‖max) + logn+ log p))

as a bound on all computation in the lifting steps.
Reconstruction: Finally we consider the combined cost

of the rational reconstruction and solution checks performed.
At the ith loop the cost of rational reconstruction is bounded
by O(n(i log(p))2) since each of the n components will have
bitsize O(i log(p)). Once a candidate solution x is recon-
structed it is checked for correctness. This can be done by
first transforming it to be represented with a common de-
nominator as z/d = x. If any entries of z or the common de-
nominator d exceed the numerator and denominator bounds
Bn = Bd =

p
pi+1/2 then the check is aborted. Now, if the

bitsize of d and the entries of z areO(i log(p)) then the cost of
computing Az will be O(n2(log(‖A‖max)(i) log(p) + log(n)))
since it requires performing an integer matrix-vector mul-
tiplication where the entries of the matrix are bounded by
‖A‖max, and the entries of the vector have bitsize O(i log p)
and the largest entries of the resulting values of Az have bit-
size bounded by O(log ‖A‖max + logn+ (i) log(p)). The cost
of computing bd is O(n log(‖b‖∞)(i) log(p)). Therefore the
total cost of rational reconstruction and solution checking
over all loops k = 1, 2, . . . , O(log(log(S)/ log(p))) where it is
applied is:

O(log(log(S)/ log(p)))X
k=1

O
“
n log2(p)(2k)2

+n2(log(‖A‖max) log(p)2k + logn)

+ n log(‖b‖∞) log(p)2k
”
.

This summation is bounded above by:

O(n log2(S) + n2 log(S)(log ‖A‖max + logn)

+n log(S) log(‖b‖∞))

Total cost: Finally, considering the cost of the matrix inver-
sion, lifting and reconstruction attempts can all be bounded
by:

O
`
n3 log2(p) + n2 log(‖A‖max) log(p) + n log2(S)

+n2 log(S)(logn+ log ‖A‖max + log p)

+n log(S) log(‖b‖∞))

And using the fact that log(S) = O(n log(n) +
n log(‖A‖max) + log ‖b‖∞) we can simplify this to:

O
`
n3 log2(p) + n2 log(‖A‖max) log(p) + n log(S) log(‖b‖∞)

+n2 log(S)(logn+ log ‖A‖max + log p)
´

which gives the desired bound.
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This result agrees with the result of Theorem 3.1 when
the sizes of the input numbers are all treated as constants.
Comparing this to Theorem 6.1 we see that the algorithm
can perform asymptotically faster if the final solution size is
small. We will also see that it performs no worse even when
the solution size is as large as possible.

Corollary 6.3. The bit complexity of the Output Sensitive
Dixon Algorithm as given by Theorem 6.2 is

O(n3(logn+ log ‖A‖max + log p)2 + n log2 ‖b‖∞)

Proof. The result of Theorem 6.2 gives the following bound:

O
`
n3 log2(p) + n2 log(‖A‖max) log(p) + n log(S) log(‖b‖∞)

+n2 log(S)(logn+ log ‖A‖max + log p)
´

By the Hadamard bound we know that log(S) =
O(n log(n) + n log(‖A‖max) + log ‖b‖∞), so plugging in this
bound and removing all terms that already satisfy the de-
sired bound we are left with:

O(n2 log(‖b‖∞)(logn+ log ‖A‖max + log p))

To observe that these terms also meet our desired bound
consider the two cases where either log(‖b‖∞) ≥ n(logn +
log ‖A‖max + log p) or log(‖b‖∞) ≤ n(logn + log ‖A‖max +
log p) and the result follows.
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