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Abstract

We perform a shooting experiment for the knapsack facets and observe that 1/k-facets are
strong for small k; in particular, k dividing 6 or 8. We also observe spikes of the size of 1/k-facets
when k = n or when k + 1 divides n+ 1. We discuss the strength of the 1/n-facets introduced
by Aráoz et al. [2] and the knapsack facets given by Gomory’s homomorphic lifting.

A general integer knapsack problem is a knapsack subproblem where a portion, often a
significant majority, of the variables are missing from the master knapsack problem. The number
of projections of 1/k-facets on a knapsack subproblem of l variables is O(ldk/2e), note that this
is independent of the size of the master problem. Since 1/k-facets are strong for small k, we
define the 1/k-inequalities which include the 1/d-facets with d dividing k and fix k to be a small
constant such as k = 6 or k = 8. We develop an efficient way of enumerating violated valid
1/k-inequalities. For each violated 1/k-inequality, we determine its validity by solving a small
integer programming problem, the size of which depends only on k.

1 Introduction

The master knapsack problem of order n is defined to be

max vt (1)

st
n∑
i=1

iti = n (2)

t ≥ 0 (3)

ti are integers, (4)

where v ≥ 0 is a row vector of length n, and t is a column vector of n variables. Observe that
equation (2) contains all integer coefficients from 1 to n. The problem given by (1)-(4) is known as
the master knapsack problem, K(n).

The convex hull of the solutions to K(n) is denoted by P (K(n)) and referred to as the master
knapsack polytope. The dimension of P (K(n)) is n − 1 and the non-negativity constraints (3) are
facet-defining for i ≥ 2 (see Shim [16] and Shim and Johnson [18].) We call the facet-defining non-
negativity constraints trivial facets. The other facets are called knapsack facets. Since P (K(n))
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is not full dimensional, each knapsack facet has infinitely many representations. Throughout this
paper, we consider the representation ξt ≤ 1 with ξ1 = 0 and ξn = 1, where ξ is the length n row
vector of coefficients. Overloading our notation we use ξ as a representative of ξt ≤ 1 and refer
to this vector itself as a knapsack facet. A knapsack facet ξt ≤ 1 is called a 1/k-facet if k is the
smallest possible integer such that

ξi ∈ {0/k, 1/k, 2/k, ..., k/k} ∪ {1/2} . (5)

Note that k is the least common multiple of the denominators of the irreducible fractions ξi except
ξi = 1/2. The set of indices i where the coefficients ξi = 1/2 is referred to as the half landing. The
half-landing of a knapsack facet is known in [17] to have indices i with n/3 < i < 2n/3. We call a
1/k-facet strict if m/k appears as a coefficient for every m ∈ {1, 2, ..., k} \ {k/2}.

The remainder of the paper is organized as follows. In Section 2, we introduce some specific
classes of knapsack facets to be further discussed and studied. In Section 3, we describe the results
of a shooting experiment and observe that 1/k-facets are important for k dividing 6 or 8. We also
observe importance of 1/k-facets when k = n or when k + 1 divides n+ 1.

Knapsack subproblems are restrictions of the master knapsack problem where the variables ti
only appear for i ∈ L where L ⊆ {1, . . . , n}, i.e., some of the coefficients do not appear in the
equation. The convex hull of the feasible solutions to a knapsack subproblem is given by

P (K(n)) ∩ {t : ti = 0 ∀i /∈ L}.

Knapsack subproblems provide a connection between the master knapsack problem and many
single row relaxations of general integer programs. The projections of the knapsack facets are valid
inequalities for a knapsack subproblem.

In Section 4, we develop an algorithms to separate and enumerate 1/k-facets for some small
values of k for knapsack subproblems. The number of projections of 1/k-facets for a knapsack
subproblem of l variables is O(ldk/2e), which is independent of the size of the master problem.
We therefore are focused on the use of separation and enumeration algorithms for the knapsack
subproblems whose running time are independent of n.

In Section 5, we discuss a notion of the strength of a knapsack facet and analyze the strength
of a class of 1/n-facets, which were observed to be important in the shooting experiment. In
Section 6, we discuss some special classes of knapsack subproblems where 1/k-facets with small
k are likely to be ineffective and suggest alternative solution methods, such as group relaxations.
Finally, Section 7 gives concluding remarks.

2 Characterization of 1/k-facets

Aráoz [1] characterized the knapsack facets as the extreme rays of a polynomially sized system of
super-additive relations. Hunsaker [14] described the knapsack facets by the extreme points of the
system with fixing ξ1 = 0.

Theorem 2.1 (Aráoz [1], Hunsaker [14]) The coefficient vectors ξ of the knapsack facets ξt ≤
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1 of K(n) with ξ1 = 0 and ξn = 1 are the extreme points of the system of linear constraints

ξ1 = 0, (6)

ξn = 1, (7)

ξi + ξn−i = 1 for 1 ≤ i ≤ n/2, (8)

ξi + ξj ≤ ξi+j whenever i+ j < n. (9)

The feasible solutions to the system give valid inequalities ξt ≤ 1 for P (K(n)).

We call (8) and (9) the complementarities and the superadditivities, respectively. Therefore, a
knapsack facet ξ is a non-decreasing sequence because

ξi = 0 + ξi = ξ1 + ξi ≤ ξi+1.

Although P (K(n)) has exponentially many facets, certain polynomially sized subsets of these
facets appear to be of special importance. In the following we review some of these classes.

2.1 1/k-inequalities

In this paper, a sequence ξ = (ξi)
n
i=1 is called symmetric if the complementarities (8) hold. We call

ξt ≤ 1 a 1/k-inequality if ξ is a non-decreasing symmetric sequence that satisfies (5). In general,
a 1/k-inequality need not be a valid inequality for P (K(n)). We see that a 1/d-inequality is a
1/k-inequality if d is a divisor of k. A 1/k-inequality ξ is uniquely determined by a non-decreasing
sequence (am) where am represents the first index i with ξi ≥ m/k for m ∈ {0, 1, ..., k} ∪ {k/2}.
Observe that k/2 is not an integer for k odd but is required to obtain the coefficient 1/2. If
am = am+1 or if am = am+1/2 with k odd and m ∈ {(k − 1)/2, k/2}, no coefficient ξi has value

m/k. Such a sequence ξ will be denoted by ξk-(am). Also, because of symmetry, the number of ξi’s
of value m/k must equal the number of those of value (k −m)/k. Thus, am for m = 1, ..., k/2 are
sufficient to uniquely define ξk-(am). A 1/k-inequality is called a 1/k-facet if it is a knapsack facet
and if k is the smallest possible integer that satisfies (5). We remark that every facet is a 1/k-facet
for some value of k. However, fixing k allows us to consider specific, polynomially sized, classes
of facets; we are particularly interested in certain small fixed values of k, the importance of which
have been demonstrated by Shim, Cao and Chopra [17].

2.2 1/n-facets

Aráoz et al. [2] defined two families of knapsack facets which are equivalent to 1/n-facets. One family
is defined in Theorem 6.5 of [2] and equivalent to the 1/n-facets ξn-(am) given by a1 = ... = aq = q
and by ai = die for q ≤ i ≤ n− q where 1 < q ≤ n

4 .

The other family is defined in Theorem 6.3 of [2] and equivalent to the 1/n-facets ξn-(am) given
by ai = i for i < q even and ai = i+ 1 for i < q odd and by ai = i for q ≤ i ≤ n− q where q ≤ n

2
if n is even and q ≤ n−2

3 if n is odd. Any knapsack facet ξ with ξ2 = 2
n belongs to the family, as

shown in Aráoz et al. [2].
In Section 5.3, we analyze the strength of these two families of 1/n-facets and see that the first

family appears to be important, and the second one appears to be less important, this agrees with
the findings in the shooting experiment described in Section 3.
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2.3 Group homomorphically lifted facets

A knapsack problem may be relaxed to the cyclic group problem, defined by Gomory [8]. The
cyclic group problem (Cn, b) with respect to a cyclic group Cn of order n and a non-zero element b,
has a feasible region given by vectors t that satisfy∑

g∈Cn\{0}

gtg = b,

where tg, g ∈ Cn \ {0}, are non-negative integer variables. The convex hull of the integer solutions
t of the problem was shown by Gomory [8] to be a polyhedron and is referred to as the cyclic group
polyhedron, denoted P (Cn, b). The non-negativity constraints tg ≥ 0, g 6= 0, are facets of P (Cn, b)
and called trivial facets. The non-trivial facets are denoted by πt ≥ πb > 0 and called cyclic group
facets.

A homomorphism φ of a group G into a group H is a map φ : G → H which preserves the
addition; i.e.,

φ(g1 + g2) = φ(g1) + φ(g2) for all g1, g2 ∈ G.

The kernel Ker(φ) of the map φ : G → H is defined to be the set of elements g in G which are
mapped to φ(g) = 0.

Gomory [8] showed a facet of a group polyhedron with a 0 coefficient can be constructed by
repeating a facet of a lower dimensional group polyhedron. His lifting theorem enables us to
assemble facets as building blocks for higher dimensional facets:

Theorem 2.2 Let G be an abelian group and let K be a subgroup of G. Let b ∈ G \ K and let
φ : G → G/K be the canonical homomorphism of G onto the factor group G/K. If π̂ is a group
facet for G/K with right-hand side b̂ = φ(b), then a group facet for G with right-hand side b is
given by

π(g) = π̂(φ(g)).

G/K

G

R

π

ɸ

π̂

Lifted facets are shown to be important for the cyclic group polyhedron in the shooting experiment
performed by Gomory, Johnson and Evans [12].

We refer to the vector (1/n, 2/n, ..., n/n) as lineality and denote it by lin(n), note that this
is simply the coefficient vector of the knapsack equation divided by n. There is a connection
between the knapsack facets and the facets of the cyclic group polyhedron; namely the knapsack
facets for P (Kn) are precisely the cyclic group facets which are adjacent to the lineality lin(n) in
P (Cn+1, n) [2]. The following theorem states a tilting by which our representation ξt ≤ 1 of a
knapsack facet can be converted into a cyclic group facet πξt ≥ 1 of P (Cn+1, n).
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Theorem 2.3 Let sep(ξ) = maxi+j>n+1 ξi + ξj − ξi+j−n−1 and let

πξ =
n+ 1

n · sep(ξ)− (n+ 1)
· (lin(n)− ξ) + lin(n).

Then, the knapsack facet ξt ≤ 1 with ξ1 = 0 and ξn = 1 can be alternatively represented by πξt ≥ 1
which is a cyclic group facet for P (Cn+1, n).

Since lifted cyclic group facets are important, we suspect the knapsack facets equivalent to lifted
cyclic group facets to also be important. If k + 1 divides n + 1, there is a 1/k-facet such that its
equivalent cyclic group facet has a zero coefficient πi = 0 and is a lifted facet; in particular, the

repetition πξ of lin
(
n+1
k+1

)
is a cyclic group facet of (Cn+1, n) having a zero coefficient. In Section 3,

we observe that 1/k-facets are strong when k + 1 divides n+ 1.

3 Shooting experiment

Intuitively, the shooting experiment shoots an arrow from the origin toward the knapsack facets in
a random direction sampled from the spherically uniform distribution in the non-negative orthant,
and sees which facet is hit first. A random vector v follows the spherically uniform distribution
in the non-negative orthant if vi are the absolute values of the independent and identically nor-
mally distributed random variables with mean 0. While this conceptual process might seems to
require checking exponentially many knapsack facets against the random direction, the facet hit
by each shot can be determined in polynomial time by solving a single linear program. As done by
Hunsaker [14], we may perform a shooting experiment by solving the shooting linear programming
problem to maximize a random direction v ≥ 0 over the constraints (6)-(9) with variables ξ. Its
optimal solution ξ is the coefficient vector of the knapsack facet ξt ≤ 1 hit by shooting in v.

Shooting experiments were first used in the context of the TSP by Kuhn [15], and then by
Gomory, Johnson and Evans [12], Evans [6] and Dash and Günlük [5] for the master cyclic group
polyhedron.

3.1 Minimal characterization of the knapsack facets

We identify a minimal representation of the system (6)-(9) transforming the minimal representation
in Shim [16].

Theorem 3.1 A minimal representation of the system (6)-(9) is the equalities in (6)-(8) and the
inequalities (9) replaced by

ξi + ξj ≤ ξi+j for i ≤ j < i+ j < n/2, (10)

ξi + ξj + ξn−i−j ≤ 1 for i ≤ j ≤ n− i− j < n/2, (11)

and 2ξ
(n

4

)
≤ ξ

(n
2

)
=

1

2
if n ≡ 0 mod 4. (12)

The shooting experiment is also equivalent to solving the linear programming problem to maximize∑
1<i<n/2

(vi − vn−i)ξi
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Figure 1: The number of hits absorbed by 1/k-facets of K(n) out of one million shots for each
n ≤ 150

over the system (10)-(12). Its optimal solution (ξi : 1 < i < n/2) can be lifted by complementarities
(8) to the coefficient vector ξ = (ξi : i = 1, ..., n) of a knapsack facet ξt ≤ 1. The number of variables
of the reduced shooting LP is half that of the original shooting LP and the number of constraints
reduces to one third. Hence, Theorem 3.1 allows performing the shooting experiment for a larger
n.

3.2 Concentration on 1/k-facets with k dividing 6 or 8

Shim and Johnson [18] performed a shooting experiment firing off 10,000 shots for small order
n ≤ 20 and identified a pattern of the most hit knapsack facets. In every shooting experiment, the
most hit facet was always the 1-facet of rank 0 and all the 1-facets absorbed more than 50% of hits
except n = 6, 12, 18. This numerical experiment suggested that, if we look at the knapsack facets
from the origin, the 1-facets, a family of linear size in n, will dominate our field of view, despite
the fact that exponentially many facets are needed to describe P (K(n)). The 1-facets are shown
in [18] to be adjacent to each other.

Figure 1 is a result of our new shooting experiment firing off one million shots for large order
n ≤ 150 and confirms that the 1-facets absorb more than 50% of the hits except for the cases
n = 6, 12, 18, 24. The horizontal axis of the figure indicates n = 5, ..., 150 and the vertical axis
indicates the number of hits absorbed by the 1-facets out of a million shots for each n. In the figure
we see that the 1/k-facets with k dividing 6 or 8 absorb more than 75% of shots.
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Figure 2: The number of hits absorbed by 1/k-facets, and lifted 1/k-facets of K(29) out of one
million shots. (Case k = 2 excluded from plot).

3.3 Decrease and oscillation of the size of 1/k-facets

Figure 2 depicts the result of the shooting experiment for K(29), the graph plots the number of
shots absorbed by 1/k-facets and lifted 1/k-facets for each value of k up to 30. Here we see that
the number of 1/k-facets hit decreases as k grows and oscillates; i.e., 1/k-facets are hit more often
with k even than those with k odd. The worst case analysis of [17] suggests that the size of regular
1/k-facets decreases and oscillates in the same manner. The result of shooting experiment goes
together with the worst case analysis and we provide theoretical support for the results of the
shooting experiment.

3.4 Spikes at 1/n-facets and lifted facets

In Figure 2, we see two kinds of spikes; one at k = n and the other at k with k + 1 dividing n+ 1.
The 1/n-facets are frequently hit when n is small, and somewhat less hit as n grows. We are more
interested in 1/k-facets with small k. However, lifted facets are frequently hit for all values of n; in
particular 1/k-facets that correspond to repetitions of lin(d) with d = (n+ 1)/(k + 1) when tilted
to the π notation of (Cn+1, n) are frequently hit.
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4 Separation and enumeration for sub-problems

Recall that a knapsack subproblem is a restriction of the master knapsack problem that is missing
some terms in the knapsack equation (2); i.e.,∑

i∈L
iti = n, (13)

where L is a non-empty subset of {1, ..., n}. We are especially interested in cases when the dimension
l = |L| of the subproblem is much smaller than the size n of the master problem. The knapsack
facets are valid inequalities for a knapsack subproblem.

4.1 Separation of the projections of 1-facets

Although the master knapsack problem has Θ(n) 1-facets, a knapsack sub-problem has only O(l)
unique projected 1-facets. We now develop a separation algorithm that will identify the 1-facet
most violated by a given nonnegative solution t̂ in time linear in l. Recall that a 1-facet ξ2-(a1,a2)

is defined uniquely by the number a1 which is known to satisfy n/3 < a1 ≤ (n+ 1)/2.
If the following quantity is greater than zero, it gives the amount by which a nonnegative solution

t̂ violates the 1-facet ξ2-(a1,a2) (if non-positive, it is the slack by which t̂ satisfies the 1-facet):

V IOL(a1) = ξ2-(a1,a2)t̂− 1 =

 ∑
i∈L,a1≤i<n−a1

t̂i/2 +
∑

i∈L,i≥n−a1

t̂i

− 1. (14)

To find the most violated 1-facet we must determine

max
n/3<a1≤(n+1)/2

V IOL(a1). (15)

However, in order to find a1 maximizing the quantity in formula (15) we observe that many values
of a1 need not be considered because L does not contain all indices between 1 and n. Namely, it is
sufficient to consider a1 ∈ X where X = {x : n/3 < x ≤ (n+ 1)/2 and either x ∈ L or n− x ∈ L}.
Essentially, X gives a set of indices that are feasible for a1 and also correspond to indices where
L has a nonzero component in position a1, or the complementary position a2 = n − a1. (There is
one exceptional case when X is empty, in such case it is enough to consider the 1-facet given by
a1 = b(n+ 1)/2c, which can be easily checked.)

We assume that the values in X = {x1, . . . , xm} are in sorted order. Note that V IOL(x1) may
be computed in O(l) time using formula (14). Additionally, if 1 < i ≤ m then

V IOL(xi) = V IOL(xi−1) +
1

2
(t̂xi − t̂n−xi) (16)

where t̂k is understood to be zero whenever k /∈ L. Noting that |X| = O(l) we see that this
naturally leads to a dynamic programming style O(l) time algorithm to evaluate formula (15) and
find the 1-facet most violated by t̂. A simple modification to this algorithm would also allow us to
enumerate all violated inequalities from this class.
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4.2 Enumeration of the violated projections of 1/k-inequalities

The number of the projections of the 1/k-inequalities is O
(
ldk/2e

)
which is independent of n, the

size of the master knapsack problem K(n). If we enumerate the 1/k-inequalities one by one and
compute LHS = ξLtL in linear time O(l) to see violation or LHS > 1 for each 1/k-inequality,
the total time for enumerating the violated 1/k-inequalities is O

(
ldk/2e+1

)
. In a similar manner to

Section 4.1, we can enumerate the violated projections of 1/k-inequalities keeping time O
(
ldk/2e

)
by updating ξLtL from iteration to iteration (in constant time) instead of computing it from scratch
for each ξL. However, as noted previously not all 1/k-inequalities are valid; in the next section we
describe a very small integer program that can be used to determine if ξL defines a valid inequality.

4.3 Validity of the projections of 1/k-inequalities

For each violated projection ξL of a 1/k-inequality, we must check if there is a coefficient vector ξ
of a valid inequality satisfying (6)-(9), implying the validity of ξL. The following gives a polyhedral
description of the necessary relationships between the elements of the sequence (am), defining the
coefficients of a 1/k-inequality ξk-(am).

Lemma 4.1 A 1/k-inequality ξk-(am) satisfies (6)-(9) if and only if

2 ≤ am1 ≤ am2 ≤ (n+ 1)/2 for m1 ≤ m2, (17)

am + ak+1−dme = n+ 1 for m ≤ k/2, (18)

am1 + am2 ≥ adm1+m2e for all m1 ≤ m2 with dm1 +m2e ≤ k. (19)

In order to check if there is ξ satisfying (6)-(9), we can check if there is an integer solution (am)
satisfying (17)-(19). Note that the system has dk/2e variables and O(k2) constraints. The number
of variables and the number of constraints are independent of l and constant if k is fixed to be a
constant. We now give two examples illustrating how this technique can be applied.

Example 4.2 A 1/6-inequality ξ6-(am) is valid if there is an integer solution (am) satisfying

1. Complementarities: a1 + a6 = n+ 1, a2 + a5 = n+ 1, a3 + a4 = n+ 1

2. Non-decreasing: 2 ≤ a1 ≤ a2 ≤ a3 ≤ (n+ 1)/2

3. Sub-additivities: 2a1 ≥ a2, a1 + a2 ≥ a3; a1 + 2a3 ≥ n+ 1, 2a2 + a3 ≥ n+ 1

4. Defining: xi1−1 + 1 ≤ a1 ≤ xi1 , xi2−1 + 1 ≤ a2 ≤ xi2 , xi3−1 + 1 ≤ a3 ≤ xi3
where xi1 , xi2 , xi3 ∈ X are the smallest indices x ∈ X of ξx ≥ 1/6, 2/6, 3/6.

Example 4.3 A 1/8-inequality ξ8-(am) is valid if there is an integer solution (am) satisfying

1. Complementarities: a1 + a8 = n+ 1, a2 + a7 = n+ 1, a3 + a6 = n+ 1, a4 + a5 = n+ 1

2. Non-decreasing: 2 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ (n+ 1)/2

3. Sub-additivities: 2a1 ≥ a2, a1 + a2 ≥ a3, a1 + a3 ≥ a4, 2a2 ≥ a4; a1 + 2a4 ≥ n + 1,
a2 + a3 + a4 ≥ n+ 1, 3a3 ≥ n+ 1,

4. Defining: xi1−1+1 ≤ a1 ≤ xi1 , xi2−1+1 ≤ a2 ≤ xi2 , xi3−1+1 ≤ a3 ≤ xi3 , xi4−1+1 ≤ a4 ≤ xi4
where xi1 , xi2 , xi3 , xi4 ∈ X are the smallest indices x ∈ X of ξx ≥ 1/8, 2/8, 3/8, 4/8.
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5 Worst case analysis

In the shooting experiment, we have observed a spike of the size of 1/k-facets at k = n. In this
section, we define the strength of a facet and analyze bounds on the strength of the 1/n-facets
introduced in Section 2.2.

5.1 Measures of facet size and strength

Although the facets of a polyhedron are all necessary elements of its description as a system
of inequalities, there are ways in which some facets could be considered more important than
others. One measurement for facet importance is the result of a shooting experiment, as described
in Section 3. From the perspective of the origin (or an alternative point used as the origin of
the shots), the shooting experiment measures the percent of the field of vision occupied by the
individual facets; as this can be thought of as a measure of size from a given perspective for the
remainder of the paper we will call facets that were frequently hit in the shooting experiment large
and those that are not frequently hit small.

An alternative view of facet importance is known as the worst case analysis which, for an
individual facet ξt ≤ 1 considers the problem of maximizing the objective ξt over the polyhedron
after removal of the facet ξt ≤ 1. Since a facet is necessary for the description, the optimal objective
value is always larger than one; however, if it is very close to one we may consider such facet to be
weak, and if this value is larger we consider the facet to be strong.

Shim, Cao and Chopra [17] have computationally demonstrated that these notions of large and
small, and strong and weak go together in the sense that these measures are highly correlated
with each other, i.e. large facets were consistently found to be strong, and small facets were found
to be weak. Since computing the strength or weakness of all individual facets is computationally
intensive as n and the number of facets grow, the worst case analysis was only performed for values
of n ≤ 26. Their work is an important confirmation of the validity of the shooting experiment as an
accurate measurement of facet importance for the master knapsack polytope; previously some had
questioned the validity of shooting experiments because the result depends on the selection of a
point from which to fire off the shots (the origin in our case). This confirmation is good news for the
computational evaluation of facets because the shooting experiment is much more computationally
tractable than the worst case analysis of all individual facets. In the following we define a slightly
more general notion of strength and prove that it is equivalent to the notion of strength informally
described above and used in [17].

5.2 Gradient lemma

Let zIP (v) denote the optimal value of the knapsack problem with objective v ≥ 0 and let zLP (ξ)(v)
denote the optimal value of the LP problem over the system of the knapsack equation, the non-
negativity constraints and all knapsack facets except ξt ≤ 1.

Consider the primal linear programming problem over the system (20) describing P (K(n)) with
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ξ1t ≤ 1 deleted

max vt

st lin(n) · t = 1

ξ1t ≤ 1 (20)

...

ξKt ≤ 1

t ≥ 0,

where lin(n) = (1/n, 2/n, ..., n/n) is the coefficient vector of the equation replacing the knapsack
equation. Then, zLP (ξ1)(v) is the optimal solution. Note that the dual problem can be written as

min x0 + x1 + ...+ xK , (21)

st x0 · lin(n) + x1ξ
1 + ...+ xKξ

K − y = v, (22)

x1, ..., xK and y are all nonnegative. (23)

We fix x1 = 0 when ξ1t ≤ 1 is deleted.
The LP-relaxation gap of ξt ≤ 1 is defined to be

max
v≥0

zLP (ξ)(v)

zIP (v)
.

Note that its appropriate to use max instead of sup above as zLP (ξ)(v) will always be bounded
and have an optimal solution; this follows from the fact that any solution t satisfies t ≥ 0 and
lin(n) · t = 1. A knapsack facet ξ is said to be strong if the gap is large and weak otherwise. In
this section, we show that the gap is same as

zLP (ξ)(ξ).

Lemma 5.1 Let ξkt ≤ 1, k = 1, ...,K, be the knapsack facets of P (K(n)) with ξk1 = 0 and ξkn = 1.
Then, for each k = 1, ...,K, the LP-relaxation gap of ξk is

max
v≥0

zLP (ξk)(v)

zIP (v)
=
zLP (ξk)(ξk)

zIP (ξk)
= zLP (ξk)(ξk). (24)

Proof. Since ξk1 = 0 for all k = 1, ...,K, the first component of the equation in (22) implies

x0 = (v1 + y1)n ≥ 0 (25)

which can be added to (23) having all dual variables non-negative.
Let tIP be an optimal solution to the primal problem (20) and let (xIP , yIP ) be an optimal

solution to the dual problem described in (21)-(23). Then, we have strong duality

vtIP =
K∑
i=0

xIPi
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and we may assume by scaling v that

zIP (v) = vtIP =

K∑
i=0

xIPi = 1. (26)

Since all xIPi are non-negative in (23) and (25), equality (26) is followed by

xIPi ≤ 1 for i = 0, ...,K. (27)

We only need to show the theorem for k = 1. If ξ1tIP < 1, then xIP1 = 0 by complementary
slackness and eliminating ξ1t ≤ 1 does not change the dual optimal value. We assume that ξ1tIP =
1. Let tLP be an optimal solution to the primal problem (20) with ξ1t ≤ 1 eliminated. Then, we
may assume that

ξ1tLP ≥ 1; (28)

otherwise, tLP is feasible for the original (20) and can be switched to tLP = tIP .
We complete the proof of the theorem by showing ξ1tLP ≥ vtLP . From (27), (28) and (26), it

follows that

ξ1tLP = (xIP1 + (1− xIP1 ))ξ1tLP = xIP1 ξ1tLP + (1− xIP1 )ξ1tLP

≥ xIP1 ξ1tLP + (1− xIP1 )(1) = xIP1 ξ1tLP +

(
xIP0 +

K∑
i=2

xIPi

)
. (29)

Since lin(n) · tLP = 1 and ξitLP ≤ 1 for i = 2, ...,K, (29) is followed by

ξ1tLP ≥ xIP1 ξ1tLP + xIP0 +
K∑
i=2

xIPi

≥ xIP1 ξ1tLP + xIP0 (lin(n) · tLP ) +
K∑
i=2

xIPi (ξitLP )

= xIP0 (lin(n) · tLP ) + xIP1 ξ1tLP +

K∑
i=2

xIPi (ξitLP )

= xIP0 (lin(n) · tLP ) +

K∑
i=1

xIPi ξitLP

≥ xIP0 (lin(n) · tLP ) +
K∑
i=1

xIPi ξitLP − yIP tLP

=
(
xIP0 (lin(n)) + xIP1 ξ1 + ...+ xIPK ξK − yIP

)
· tLP = vtLP ,

completing the proof.
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5.3 The LP-relaxation gap of a 1/n-facet

We now present bounds on the LP-relaxation gap of two classes of 1/n-facets introduced in Sec-
tion 2.2.

Theorem 5.2 The LP-relaxation gap of ξn-(am) given by a1 = ... = aq = q and by ai = die for
q ≤ i ≤ n− q where 1 < q ≤ n

4 satisfies

zLP (ξn-(am))(ξn-(am)) < 1 +
q

n
≤ 1 +

1

4
.

Proof. Note that

ξ
n-(am)
i =


0 for i < q,
i/n for q ≤ i ≤ n− q, and
1 for i > n− q.

Let ξ̂ be the 1-facet with the shortest half landing. It holds that

ξn-(am) ≤ lin(n) +
q − 1

n
· ξ̂

because for i ≤ n− q,

ξ
n-(am)
i − lin(n)i = ξ

n-(am)
i − i

n
≤ i

n
− i

n
= 0 ≤ q − 1

n
· ξ̂i,

and for i ≥ n− q + 1,

ξ
n-(am)
i − lin(n)i ≤ 1− i

n
≤ 1− n− q + 1

n
=
q − 1

n
=
q − 1

n
· ξ̂i.

From q ≤ n
4 , it follows that

zLP (ξn-(am))(ξn-(am)) ≤ 1 +
q − 1

n
< 1 +

q

n
≤ 1 +

1

4
.

Theorem 5.3 The LP-relaxation gap of ξn-(am) given by ai = i for i < q even and ai = i+ 1 for
i < q odd and by ai = i for q ≤ i ≤ n− q where q ≤ n

2 is even and q ≤ n−2
3 if n is odd satisfies

zLP (ξn-(am))(ξn-(am)) ≤ n− q + 2

n− q + 1
= 1 +

1

n− q + 1
≤ 1 +

2

n+ 2
.

Proof. With α = n−q+2
n−q+1 , it holds that

α · lin(n)i = α · i
n
≥ i

n
+

1

n

specially for i = n− q + 1. Therefore,

α · lin(n) =
n− q + 2

n− q + 1
· lin(n) ≥ ξn-(am).
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From q ≤ n/2, it is followed by

n− q + 2

n− q + 1
= 1 +

1

n− q + 1
≤ 1 +

2

n+ 2
.

The 1/n-facets analyzed in Theorem 5.2 appear frequently in our shooting experiment. So,
although the upper bound on their strength established in Theorem 5.2 does not guarantee that
large or strong facets of this category exist for all n, it is consistent with our shooting experiment.

The upper bound of the LP-relaxation gap of 1/n-facets in Theorem 5.3 proves that this second
category of 1/n-facets are weak asymptotically, because the right hand side of the bound approaches
one as n approaches infinity. This result is consistent with our shooting experiment, where facets
in this category were seldom observed and were not identified as large. Together, these results give
us a deeper understanding of which 1/n-facets are important.

6 Remarks

We have discussed separation and enumeration of 1/k-facets for knapsack subproblems. We would
hypothesize that these facets will be especially helpful on knapsack subproblems where the included
indices L are somewhat evenly distributed among the values {1, 2, . . . , n}. However, there are other
cases in which there is reason to believe that the 1/k-facets will be unhelpful. For example, if most
or all of the indices L take relatively small values, then the 1/k-facets will have some disadvantages
for small values of k; this is because the superadditivity constraints imply that ξi = 0 for all i ≤ n

k+1
if ξ is a 1/k-facet. Thus, the coefficients of the projected facet might be mostly, or entirely zero.
Thankfully, in such extreme cases other techniques are likely to be effective, as we now explain.

Cyclic group relaxation. Gilmore and Gomory [7] observed a cyclic group repetition for the
knapsack sub-problems with larger n. In particular, if the right hand size of the knapsack subprob-
lem is considerably larger than all of the indices in the set L, then the cyclic group relaxation leads
to especially useful inequalities.

Super-increasing knapsack. Super-increasing knapsack problems are a class of knapsack sub-
problems where 1/k-facets with small k are not likely to work well. A super-increasing knapsack
problem is a knapsack sub-problem (13) with respect to L = {i1 < ... < il} satisfying∑

u<v

iu ≤ iv.

A subproblem (13) with L = {20, 21, ..., 2l−1} and n = 2l − 1 is an example of super-increasing
knapsack problem. In particular, super-increasing knapsack problems have the property that most
of the indices in L are concentrated in the smaller values, likely making the 1/k-facets ineffective
for small values of k. It will be most interesting to identify strong facets of the convex hull of
the integer solutions to a super-increasing knapsack problem. The recent work of Gupta [13] has
recently studied super-increasing knapsack problems.
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7 Conclusion

Our shooting experiment indicates that there is value to focusing on 1/k-facets for small values of
k, such as k dividing 6 or 8 when solving the master knapsack problem (and potentially single row
relaxations of many integer program). For both the master problem and knapsack subproblems,
1/k-facets are easier to enumerate and separate for small values of k, and for knapsack subproblems
the number of projections of 1/k-facets depends only on the size of the subproblem and not on the
size n of the master problem. We have also studied the strength of two classes of 1/n-facets, which
were introduced by Aráoz et al. [2]; in agreement with our shooting experiment we found that one
class is likely strong and the other is asymptotically weak.

References
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