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Abstract

For the integer knapsack problem, the 1/k-facets with k dividing 6 or 8 were shown to be very strong
and efficiently separated [4, 20]. We give a concise characterization of the 1/k-facets for each k
dividing 6, 8 in terms of a concise description of the coefficients. This allows these inequalities
to be separated efficiently. We develop a reduced linear programming formulation to speed up
identification of the facets hit during the shooting experiment, and confirm the strength of the
1/k-facets with k dividing 6 or 8 in higher dimensional problems.

Keywords: integer programming; knapsack facets; shooting experiment; cyclic group problem;
2-slope facet

1. Introduction

A single row integer programming problem with non-negative integer variables, coefficients and
right-hand side is known as an integer knapsack problem. The master knapsack problem K(n) of
order n is defined by

maximize vt (1)

subject to

n∑
i=1

iti = n (2)

t ≥ 0 (3)

ti are integers, (4)

where t is a column vector of variables and v is a non-negative row vector. Observe that the
knapsack equation (2) contains all possible coefficients from 1 to n. Thus, cases of the integer
knapsack problem can be obtained from the master knapsack problem by leaving some variables
out of the problem or fixing them to zero. Studies considering the structure of this problem typically
ignore the objective function (1). The convex hull of the solutions to K(n) is denoted by P (K(n))
and referred to as the master knapsack polytope. The dimension of P (K(n)) is shown in [19, 21] to
be n − 1, and the non-negativity constraints (3) are facet-defining (i.e., inequalities necessary for
the description of P (K(n))) for i ≥ 2. We call the non-negativity constraints trivial facets. The
nontrivial facets are called knapsack facets. The convex hull of the solutions to an integer knapsack
problem is a face of P (K(n)) where the excluded variables are fixed to be zero, namely

P (K(n)) ∩ {t : ti = 0 for ti left out of (2)}.
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Thus, study of the knapsack facets is of interest not only for its own sake, but also to develop a
deeper understanding of single row relaxations of many integer programming problems in general.

Since P (K(n)) is not full dimensional, each knapsack facet can be represented in infinitely many
ways. Tilting the knapsack facets to be perpendicular to the non-negativity constraint t1 ≥ 0, a
knapsack facet can be uniquely written as ξt ≤ 1 with ξ1 = 0 and simply denoted by its coefficient
vector ξ. All such coefficient vectors ξ are characterized by super-additive relations (8) as follows:

Theorem 1.1 (Aráoz [1], Hunsaker [15]) The coefficient vectors ξ of the knapsack facets ξt ≤
1 of K(n) with ξ1 = 0 are the extreme points of the system of linear constraints

ξ1 = 0, (5)

ξn = 1, (6)

ξi + ξn−i = 1 for 1 ≤ i ≤ n/2, (7)

ξi + ξj ≤ ξi+j whenever i+ j < n. (8)

The feasible solutions to the system give valid inequalities ξt ≤ 1 for P (K(n)).

Therefore, a knapsack facet ξ is a non-decreasing sequence because

ξi = 0 + ξi = ξ1 + ξi ≤ ξi+1.

An example of such a coefficient vector ξ is depicted in Figure 1.
The shape of a step function leads to a taxonomy of the knapsack facets. A knapsack facet

ξt ≤ 1 is called a 1/k-facet if k is the smallest possible integer such that

ξi ∈ {0/k, 1/k, 2/k, ..., k/k} ∪ {1/2} for all i = 1, ..., n. (9)

Note that k is the least common multiple of the denominators of the irreducible fractions ξi other
than ξi = 1/2.

The strength of 1/k-facets for small values of k has been validated both theoretically and
experimentally. In [20], Shim, Chopra and Cao showed that the removal of any 1/k-facet for k =
1, 3, 4 weakens the LP-relaxation of a complete inequality description of P (K(n)) by a significant
amount. They also showed that the removal of a 1/k-facet for small values of k has a much more
significant impact on the LP-relaxation than the removal of a 1/k-facet for large values of k.

In [4], Chopra, Shim and Steffy used a shooting experiment to further confirm the importance
of 1/k-facets for small values of k. The shooting experiment works by selecting a random direction
from the origin and then computing which facet is hit first when traveling in that direction. This
process is repeated with many randomly selected directions, each of which is referred to as a shot ;
the intuition is that more frequently hit facets are more important. Shooting experiments for all
values of n ≤ 150 in [4] showed that that 1/k-facets for k = 1, 3, 4, 6, 8 absorb over 75% shots fired.
In other words, if objective function directions were randomly selected from the origin, in over 75%
of cases, the facet hit would be a 1/k-facet for k = 1, 3, 4, 6, 8.

For the master knapsack polytope, shooting in direction v ≥ 0 is equivalent to maximizing vξ
subject to constraints (5)-(8); the resulting LP is referred to as the shooting LP. Since Kuhn [17, 18]
first proposed the shooting experiment to identify new facets of the TSP polytope, it has been used
by many authors (Hunsaker [15], Gomory, Johnson and Evans [13], Dash and Günlük [6]) to study
the size of each facet. For more details, we may refer to Hunsaker, Johnson and Tovey [16]. The
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natural assumption is that facets that are hit more frequently in a shooting experiment are likely
to be more significant in any cutting plane approach.

Our goal in this paper is to contribute to both the theoretical as well as the experimental study
of 1/k-facets for small k. In order to elaborate on our contribution to the theoretical effort, it is
useful to consider the 1/4-facet ξ for P (K(29)) shown in Figure 1. The figure shows the coefficients
of the following inequality:

11∑
i=6

1

4
ti +

17∑
i=12
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4
ti +

23∑
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ti +
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Figure 1: Coefficient vector of a knapsack facet in ξ-representation (ξt ≤ 1)

The x-axis in the figure provides the coefficient index from 1 to 29 and the y-axis provides the
corresponding coefficient value. Observe that there are two ways to describe the inequality. One is
by providing the coefficient for each variable ξi. The other is by providing the indices a1 = 6, a2 =
12, a3 = 18, and a4 = 24, where each am corresponds to the first index i such that ξi ≥ m/k. a1 = 6
corresponds to the facet index with coefficient 1/4, a2 = 12 corresponds to the first index with
coefficient 2/4 and so on. The inequality description using the sequence (am) is much more concise.
Our first contribution in this paper is to provide a concise description (through the sequence (am))
for all 1/k-facets, k = 1, 3, 4, 6, 8. The concise description allows these inequalities to be separated
efficiently.

Our second contribution in this paper is to increase the size n of the knapsack problems for
which the shooting experiment can be performed in practice. We do so by deriving a more concise
description of the LP that must be solved for each shooting. Whereas Chopra, Shim, and Steffy [4]
were able to perform the shooting experiment up to n ≤ 150, our faster approach allows us to
perform shooting experiments for n as large as 500. As a result we are able to confirm that
1/k-facets for k = 1, 3, 4, 6, 8 (k dividing 6 or 8) absorb over 75% of the shots for n as large as 500.

Starting with Gomory [9], most of the work in the literature has focused on identifying facets of
the form πt ≥ 1 in the context of the group problem. In each case, effort has gone into identifying
strong facets that can be described simply. Evans [7] and Aráoz, Evans, Gomory and Johnson [2]
identified strong cyclic group and knapsack facets with a small number of slopes, which mainly come
from 2-slope facets that were first constructed by Gomory and Johnson in [10, 11]. Cornuejols and
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Molinaro [5] constructed 3-slope facets and Basu, Hildebrand, Koppe and Molinaro [3] constructed
(k+ 1)-slope facets. Shim [19] and Shim and Johnson [21] focused on facets with fewer hills rather
than slopes.

The paper is structured as follows. In Section 2 we derive a concise characterization of the
1/k-facets for each k dividing 6 or 8. In Section 3 we develop a reduced linear programming formu-
lation for the shooting problem in a sub-additive representation and discuss its relation with our
super-additive representation. Section 4 evaluates the computational performance of this reduced
formulation. We perform shooting experiments up to n = 500 to confirm that 1/k-facets dividing
6 or 8 absorb over 75% of the shots.

2. Characterization of the strongest 1/k-facets

Shim, Chopra and Cao [20] characterized and analyzed the 1-facets that Shim [19] and Shim
and Johnson [21] first observed to be strong. Chopra, Shim and Steffy [4] defined 1/k-inequalities
that are observed to be strong for small values of k, independent of n. In particular, it was observed
that, beyond the 1-facets, the 1/k-facets are particularly strong when k = 3, 4, 6 or 8. In this section
we obtain a concise description of these important facets.

A sequence ξ = (ξi)
n
i=1 is called symmetric if the complementarities (7) hold. We call ξt ≤ 1

a 1/k-inequality if ξ is a non-decreasing symmetric sequence that satisfies (9). We see that a 1/d-
inequality is a 1/k-inequality if d is a divisor of k. A 1/k-inequality ξk-(am) is uniquely determined
by a non-decreasing sequence (am) where am represents the first index i with ξi ≥ m/k for m ∈
{0, 1, ..., k}∪{k/2}. In Figure 1, the 1/4-facet ξ is a 1/4-inequality ξ4-(am) where am = (a1, a2, a3, a4)
is given by (a1 = 6, a2 = 12, a3 = 18, a4 = 24).

Observe that the description of the inequality in terms of the sequence (am) is much more
concise than the description in terms of all the coefficients of the variables ξi. The challenge,
however, is to obtain the sequence (am) without having to explicitly obtain all the coefficients of
the variables ξi. For k = 3, 4, 6, 8, the rest of this section provides concise set of inequalities that
can be used to directly obtain the sequence (am).

The following lemma gives a polyhedral description of the necessary relationships between the
elements of the sequence (am), defining the coefficients of a 1/k-inequality ξk-(am). As we will
see, representing facets by these “break points” in the coefficient values of the facets, instead of
considering the coefficient vectors ξ allows for a compact and convenient means for describing the
facet structure.

Lemma 2.1 (Chopra, Shim and Steffy [4]) A 1/k-inequality ξk-(am) satisfies (5)-(8) if and
only if

2 ≤ am1 ≤ am2 ≤ (n+ 1)/2 for m1 ≤ m2 ≤ k/2, (10)

am + ak+1−dme = n+ 1 for m ≤ k/2, (11)

am1 + am2 ≥ adm1+m2e for all m1 ≤ m2 with dm1 +m2e ≤ k. (12)

The index polytope Pnk (am) is the bounded polyhedron of the indices (am) defined by (10)-(12).
Note that the system has O(k) variables and O(k2) constraints. (We could further reduce its size
by substituting out am,m > k/2 using (11) and reduce the number of the variables to dk/2e.) If k
is fixed to be a constant, the number of variables and the number of constraints of the system are
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constant and independent of both n the size of the master problem and l the number of variables
of a general knapsack problem.

This lemma is useful for a variety of purposes. First, given a 1/k-inequality ξ we may use the
above relations to verify whether or not it is a valid inequality for the knapsack polytope without
needing to verify feasibility for the larger number of constraints given by (5)-(8). Second, if we
are given a vector ξ representing a 1/k-inequality for an integer knapsack problem with l non-zero
variables, we can formulate an integer programming model to determine if values (am) satisfying
(10)-(12) exist that correspond to ξ; in the absence of such a formulation, it is not clear how one
might accomplish this check without attempting to extend ξ to a dense coefficient vector for the
master knapsack problem that satisfies equations (5)-(8). Finally, and perhaps most useful, we will
demonstrate how the relations (10)-(12) can be used to model the problem of finding a maximally
violated valid 1/k-inequality for a knapsack problem or subproblem.

Suppose we have an integer knapsack problem where L ⊆ {1, . . . , n} is the index set of vari-
ables not fixed to zero and that t̂ is a fractional solution to that knapsack problem (among other
properties, t̂ ≥ 0). Our goal is to find a valid 1/k inequality ξt ≤ 1 that maximizes ξt. The fol-
lowing formulation demonstrates how the separation problem can be formulated as a small integer
programming problem. Here we let K = {1, . . . , k} ∪ {k/2} and introduce variables yij where (14)
ensures that aj > i implies yij = 0. For simplicity of notation we assume in the following that k is
even. If k is odd then (13) would be modified so that the term for j = k/2 and the following term
in the series have coefficients of 1/2.

max
∑
i∈L

ξit̂i

Subject to a satisfies (10)-(12)

ξi =
∑
j∈K

yij
k
∀i ∈ L (13)

yij ≤
n− aj
n− i

∀i ∈ L, j ∈ K (14)

aj integer, yij binary

Thus if l = |L|, the separation problem for the integer knapsack problem becomes an integer
programming problem with O(kl) additional variables and constraints, beyond the O(k) variables
and O(k2) constraints from (10)-(12). Since all of this is independent of n, this will allow for
tractable separation when k and l are small. In particular, if l, k are considered as fixed values, the
separation can be done in constant time.

We now refine the inequalities given by Lemma 2.1 to precisely characterize the 1/k-facets for
each k ∈ {3, 4, 6, 8} in terms of the sequence (am). Having a clear representation of which solutions
of (10)-(12) correspond to facets will allow us to more easily enumerate these facets, or reduce the
size of the separation integer programming problem listed above.

2.1. The 1/3-facets

In this section we characterize the coefficient structure of the 1
3 -facets. Note that using (11) it

suffices to provide only the indices for coefficients not greater than k/2.
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Theorem 2.2 Let ξ3-(a1,a3/2) be a 1/3-inequality with ξ
3-(a1,a3/2)
1 = 0, ξ

3-(a1,a3/2)
n = 1, a1 < a3/2 ≤

(n+ 1)/2 and

2a1 + a3/2 ≥ n+ 1. (15)

It is a knapsack facet, if and only if

3a1 ≤ n. (16)

Proof. We first show that (15) implies the feasibility of ξ3-(a1,a3/2) to the system (5)-(8). From
Lemma 2.1, ξ3-(a1,a3/2) satisfies (5)-(8), if and only if (am) = (a1, a3/2, a2, a3) ∈ Pn3 (am); i.e.,

a1 + a3 = a3/2 + a2 = n+ 1, (17)

a1 + a1 ≥ a2, (18)

a1 + a3/2 ≥ a3, (19)

a1 + a2 ≥ a3. (20)

From (19) and a3/2 ≤ a2, (20) follows trivially. Since (17) implies that (18) and (19) are equivalent

to the single relation (15), ξ3-(a1,a3/2) is valid satisfying all (5)-(8) if and only if (15) holds. (By
definition, a 1/3-inequality is symmetric and satisfies the complementarities (17).)

We then show that (16) holds additionally if and only if ξ3-(a1,a3/2) is an extreme point of the
system (5)-(8). We only need to show that (16) holds additionally if and only if a feasible solution
ξ to the system (5)-(8) satisfying the constraints binding at ξ3-(a1,a3/2) at equality is uniquely
determined to be ξ = ξ3-(a1,a3/2). Before we prove the main result, we show that the value of all
components of such a vector ξ are uniquely determined by the value ξa1 .

Suppose ξ is a feasible solution to the system (5)-(8) satisfying all the constraints binding
at ξ3-(a1,a3/2) at equality. Note that ξ3-(a1,a3/2) satisfies the following super-additive relations at
equality

ξ
3-(a1,a3/2)
1 + ξ

3-(a1,a3/2)
i−1 ≤ ξ3-(a1,a3/2)i for i 6∈ {a1, a3/2, a2, a3}.

Therefore, ξ satisfies

ξi−1 = 0 + ξi−1 = ξ1 + ξi−1 = ξi for i 6∈ {a1, a3/2, a2, a3}. (21)

Therefore, ξ is determined by ξa1 , ξa3/2 , ξa2 and ξa3 . Then, (5)-(7) and (21) imply that

ξa3 = 1− ξn−a3 = 1− ξn−a3−1 = ... = 1− ξ1 = 1− 0 = 1, (22)

ξa2 = 1− ξn−a2 = 1− ξn−a2−1 = ... = 1− ξa1 , and (23)

ξi = 1/2 for a3/2 ≤ i ≤ n− a3/2. (24)

Thus, ξ can be determined completely once we know ξa1 .
Note that 2a1 ≥ a2 due to (18). By (21), (16) holds (equivalently, 2a1 ≤ n + 1 − a1 − 1 =

a3 − 1 < a3), if and only if ξ2a1 = ξ2a1−1 = ... = ξa2 . Moreover, 2ξa1 = ξ2a1 holds as 2ξ
3-(a1,a3/2)
a1 =

1/3 + 1/3 = 2/3 = ξ
3-(a1,a3/2)
2a1

. The three equations ξ2a1 = ξa2 , 2ξa1 = ξ2a1 and ξa2 = 1− ξa1 from

(23) above, imply that ξa1 = 1/3 and thus ξ = ξ3-(a1,a3/2). Therefore, ξ3-(a1,a3/2) is an extreme
point of the the system (5)-(8) and is a knapsack facet.
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2.2. The 1/4-facets

The 1/4-facets are characterized as follows:

Theorem 2.3 Let ξ4-(a1,a2) be a 1/4-inequality with ξ
4-(a1,a2)
1 = 0, ξ

4-(a1,a2)
n = 1, a1 < a2 ≤ (n +

1)/2,

a2 ≤ 2a1, and (25)

a1 + 2a2 ≥ n+ 1. (26)

It is a knapsack facet, if and only if

2a1 + a2 ≤ n. (27)

Proof. We first show that (25) and (26) imply the feasibility of ξ4-(a1,a2) to the system (5)-(8).
From Lemma 2.1, ξ4-(a1,a2) satisfies (5)-(8), if and only if (am) = (a1, a2, a3, a4) ∈ Pn4 (am); i.e.,

a1 + a4 = a2 + a3 = n+ 1, (28)

a1 + a1 ≥ a2, (29)

a1 + a2 ≥ a3, (30)

a1 + a3 ≥ a4, (31)

a2 + a2 ≥ a4, (32)

Similar to the proof of Theorem 2.2, we see that (29) and (31) are equivalent to (25), and (30) and
(32) are equivalent to (26).

We then show that (27) holds additionally if and only if ξ4-(a1,a2) is an extreme point of the
system (5)-(8). We only need to show that (27) holds additionally if and only if a feasible solu-
tion ξ to the system (5)-(8) satisfying the constraints binding at ξ4-(a1,a2) at equality is uniquely
determined to be ξ = ξ4-(a1,a2).

Suppose that ξ is a solution to (5)-(8) that is binding at the same inequalities as ξ4-(a1,a2).
Observe that all components of ξ are uniquely determined based on the value of ξa1 . This follows
from the fact that ξ satisfies

ξi−1 = 0 + ξi−1 = ξ1 + ξi−1 = ξi for i 6∈ {a1, a2, a3, a4}, (33)

ξa2 = 1/2 (34)

ξa4 = 1− ξ1 = 1− 0 = 1, and (35)

ξa3 = 1− ξa1 . (36)
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Consider all possible cases of the evaluation of super-additive relations (8) binding at ξ4-(a1,a2):

0 + 0 = ξ
4-(a1,a2)
i + ξ

4-(a1,a2)
j = ξ

4-(a1,a2)
i+j = 0, (37)

0 + 1/4 = ξ
4-(a1,a2)
i + ξ

4-(a1,a2)
j = ξ

4-(a1,a2)
i+j = 1/4, (38)

0 + 1/2 = ξ
4-(a1,a2)
i + ξ

4-(a1,a2)
j = ξ

4-(a1,a2)
i+j = 1/2, (39)

0 + 3/4 = ξ
4-(a1,a2)
i + ξ

4-(a1,a2)
j = ξ

4-(a1,a2)
i+j = 3/4, (40)

0 + 1 = ξ
4-(a1,a2)
i + ξ

4-(a1,a2)
j = ξ

4-(a1,a2)
i+j = 1, (41)

1/4 + 1/4 = ξ
4-(a1,a2)
i + ξ

4-(a1,a2)
j = ξ

4-(a1,a2)
i+j = 1/2, (42)

1/4 + 1/2 = ξ
4-(a1,a2)
i + ξ

4-(a1,a2)
j = ξ

4-(a1,a2)
i+j = 3/4, (43)

1/4 + 3/4 = ξ
4-(a1,a2)
i + ξ

4-(a1,a2)
j = ξ

4-(a1,a2)
i+j = 1, (44)

1/2 + 1/2 = ξ
4-(a1,a2)
i + ξ

4-(a1,a2)
j = ξ

4-(a1,a2)
i+j = 1. (45)

The equations ξi + ξj = ξi+j corresponding to (37)-(41) include zero terms when evaluated by
ξ = ξ4-(a1,a2). They are all induced by (33). Those corresponding to (44)-(45) are induced by
complementarities (34) and (36). We only need to consider the non-trivial cases (42) and (43).
They occur if and only if

2ξ4-(a1,a2)a1 = 1/2 = ξ
4-(a1,a2)
2a1

< 3/4,

ξ4-(a1,a2)a1 + ξ4-(a1,a2)a2 = 1/4 + 1/2 = 3/4 = ξ
4-(a1,a2)
a1+a2 < 1.

That is, ξa1 can be determined by

ξa1 + ξa1 = ξa2 = 1/2, or

ξa1 + 1/2 = ξa1 + ξa2 = ξa3 = 1− ξa1 ,

if and only if one of the following two sub-additive relations are satisfied

2a1 ≤ n− a2 = n+ 1− a2 − 1 = a3 − 1 < a3

a1 + a2 ≤ n− a1 = n+ 1− a1 − 1 = a4 − 1 < a4.

Both of them are equivalent to (27), completing the proof of the theorem.

2.3. The 1/6-facets and the 1/8-facets

In general, we characterize the 1/k-facets ξk-(am) in two steps. First, a 1/k-facet ξk-(am) should
be a 1/k-inequality feasible to (5)-(8). That is, (am) ∈ Pnk (am) satisfying (10)-(12). We then
show that ξ which satisfies at equality the relations binding at ξk-(am) is determined by break
points ξam and ξam that are uniquely determined by a system of independent linear equations from
super-additive relations binding at ξk-(am).

For k = 6, we explicitly write (10)-(12) from Lemma 2.1 as follows:

Observation 2.4 A 1/6-inequality ξ6-(am) satisfies (5)-(8) if and only if it satisfies
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1. Complementarities: a1 + a6 = n+ 1, a2 + a5 = n+ 1, a3 + a4 = n+ 1

2. Non-decreasing: 2 ≤ a1 ≤ a2 ≤ a3 ≤ (n+ 1)/2

3. Sub-additivities: 2a1 ≥ a2, a1 + a2 ≥ a3; a1 + 2a3 ≥ n+ 1, 2a2 + a3 ≥ n+ 1.

The index polytope Pn6 (am) for k = 6 is the bounded polyhedron defined by Relations 1-3 of indices
(am : m = 1, ..., 6) in Observation 2.4.

A 1/6-facet ξ6-(am) must satisfy a1 < a2 < a3; i.e., it must include two values ξ
6-(am)
i = 1/6 and

ξ
6-(am)
j = 2/6. By definition of 1/6-facet, ξ6-(am) must satisfy a1 < a2; i.e., it must include value

ξ
6-(am)
i = 1/6. Suppose that ξ is a solution to (5)-(8) that is binding at the same inequalities as
ξ6-(am). In the same manner as the proofs of Theorems 2.2 and 2.3, ξ can be determined by ξa1
and ξa2 . If ξa1 = ξa2 , there would be no binding super-additive relation to determine ξa1 = 1/6.

Therefore, ξ6-(am) must satisfy a2 < a3; i.e., ξ
6-(am)
i = 1/3 is required for deciding ξa1 = 1/6. Thus,

we have that a1 < a2 < a3.
We characterize the 1/6-facets in a1, a2, a3 as follows.

Theorem 2.5 Let (am : m = 1, ..., 6) be an integer solution in Pn6 (am) and let a1 < a2 < a3. The
1/6-inequality ξ6-(a1,a2,a3) is a knapsack facet if and only if (am : m = 1, ..., 6) satisfies an additional
pair of relations from the following three

1. 2a1 ≤ a3 − 1,

2. a1 + a2 ≤ n− a3, and

3. 3a2 ≤ n (equivalently, 2a2 ≤ a5 − 1).

Proof. Suppose that ξ is a solution to (5)-(8) that is binding at the same inequalities as ξ6-(am).
Then, ξ can be determined by ξa1 and ξa2 . We show that ξa1 and ξa2 are uniquely determined by
the binding super-additive relations, if and only if (am : m = 1, ..., 6) satisfies an additional pair of
relations from Relations 1-3.

We may enumerate all the cases of binding super-additive relations including terms ξ
6-(a1,a2,a3)
i =

1/6 or ξ
6-(a1,a2,a3)
j = 1/3, and see that ξa1 and ξa2 are determined by any pair of cases among the

following three

1. 1/6 + 1/6 = ξ
6-(a1,a2,a3)
i + ξ

6-(a1,a2,a3)
j = ξ

6-(a1,a2,a3)
i+j = 1/3,

2. 1/6 + 1/3 = ξ
6-(a1,a2,a3)
i + ξ

6-(a1,a2,a3)
j = ξ

6-(a1,a2,a3)
i+j = 1/2, and

3. 1/3 + 1/3 + 1/3 = ξ
6-(a1,a2,a3)
i + ξ

6-(a1,a2,a3)
j + ξ

6-(a1,a2,a3)
n−i−j = 1.

The three cases correspond to

1. 2ξa1 = ξa2 ,

2. ξa1 + ξa2 = 1/2, and

3. 3ξa2 = 1,

respectively. Any pair of the three equations are independent and determine ξa1 and ξa2 , completing
the proof of the theorem.

In a similar manner, we characterize the 1/8-facets. We explicitly write (10)-(12) from Lemma 2.1
as follows:
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Observation 2.6 A 1/8-inequality ξ8-(am) satisfies (5)-(8) if and only if it satisfies

1. Complementarities: a1 + a8 = n+ 1, a2 + a7 = n+ 1, a3 + a6 = n+ 1, a4 + a5 = n+ 1

2. Non-decreasing: 2 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ (n+ 1)/2

3. Sub-additivities: 2a1 ≥ a2, a1 + a2 ≥ a3, a1 + a3 ≥ a4, 2a2 ≥ a4; a1 + 2a4 ≥ n + 1,
a2 + a3 + a4 ≥ n+ 1, 3a3 ≥ n+ 1.

The index polytope Pn8 (am) for k = 8 is the bounded polyhedron defined by Relations 1-3 of indices
(am : m = 1, ..., 8) in Observation 2.6.

The characterization of the 1/8-facets are more complicated than 1/6-facets in that there may
be 1/8-facets missing 1/8 or 3/8 from the coefficient values ξi. We see that at least one of ξi = 1/8
and ξi = 3/8 comes up in the definition of 1/8-facets (otherwise we would have a 1/4-facet). We also
see that a 1/8-facet ξ includes ξi = 1/4, without which it would not be uniquely determined because
of lack of equality sub-additive relations. A 1/8-facet is in one of three cases; a1 < a2 < a3 < a4,
a1 < a2 < a3 = a4 or a1 = a2 < a3 < a4.

We characterize the 1/8-facets ξ where all ξi = 1/8, 2/8, 3/8 show up as follows.

Theorem 2.7 Let (am : m = 1, ..., 8) be an integer solution in Pn8 (am) and let a1 < a2 < a3 < a4.
The 1/8-inequality ξ8-(a1,a2,a3,a4) is a knapsack facet, if and only if (am : m = 1, ..., 8) satisfies an
additional triple of relations from the following five

1. 2a1 ≤ a3 − 1,

2. a1 + a2 ≤ a4 − 1,

3. 2a2 ≤ n− a4,

4. a1 + a3 ≤ n− a4, and

5. a2 + 2a3 ≤ n.

Proof. Any triple of the five equations in ξa1 , ξa2 and ξa3 corresponding to the five relations in a1,
a2, a3 and a4 are independent and determine ξa1 , ξa2 and ξa3 , completing the proof of the theorem.
For more details, the readers may refer to the appendix.

We characterize the remaining cases of the 1/8-facets as follows.

Theorem 2.8 Let (am : m = 1, ..., 8) be an integer solution in Pn8 (am) and let a1 < a2 < a3 = a4.
The 1/8-inequality ξ8-(a1,a2,a3,a4) is a knapsack facet, if and only if (am : m = 1, ..., 8) satisfies three
more additional constraints

1. a3 = a4 ≤ n/2,

2. 2a1 ≤ a3 − 1 = a4 − 1, and

3. 2a2 ≤ n− a4.

Theorem 2.9 Let (am : m = 1, ..., 8) be an integer solution in Pn8 (am) and let a1 = a2 < a3 < a4.
The 1/8-inequality ξ8-(a1,a2,a3,a4) is a knapsack facet, if and only if (am : m = 1, ..., 8) satisfies three
more additional constraints

1. a4 ≤ n/2,

2. 2a2 + a4 ≤ n, and

3. a2 + 2a3 ≤ n.
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3. Minimal representation of the shooting LP

The shooting LP to maximize vξ subject to constraints (5)-(8) may be reduced to a more concise
description by maximizing

∑
1<i<n/2(vi − vn−i)ξi over the system of the following inequalities,

ξi + ξj ≤ ξi+j for i ≤ j < i+ j < n/2, (46)

ξi + ξj + ξn−i−j ≤ 1 for i ≤ j ≤ n− i− j < n/2, (47)

and 2ξn/4 ≤ ξn/2 =
1

2
if n ≡ 0 mod 4. (48)

In this section, the reduced linear programming formulation is transformed to a sub-additive rep-
resentation and shown to have a minimal set of constraints which is a relaxation of the convex hull
of the cyclic group facets.

Observe that because the knapsack polytope is not full dimensional, facets can be represented
either using the super-additive ξ-representation (characterizing facets ξt ≤ 1 as discussed in Sec-
tions 1 and 2) or using the sub-additive relations among π variables for characterizing the facets
in the form πt ≥ 1. In Fulkersons blocking framework of the cyclic group and the knapsack poly-
hedra, Gomory [9] and Aráoz [1] preferred the sub-additive characterization of these facets. We
now develop the relationship between the cyclic group problem and the knapsack problem for the
π-representation and use it to obtain a minimal representation of the shooting LP.

The cyclic group problem (Cn, b) with respect to a cyclic group Cn of order n and a non-zero
element b, has a feasible region given by vectors t that satisfy∑

g∈Cn\{0}

gtg = b,

where tg, g ∈ Cn \ {0}, are non-negative integer variables. The convex hull of the integer solutions
t of the problem was shown by Gomory [9] to be a polyhedron and is referred to as the cyclic
group polyhedron, denoted by P (Cn, b). The non-negativity constraints tg ≥ 0, g 6= 0, are facets of
P (Cn, b) and are called trivial facets. The non-trivial facets are denoted by

πt ≥ πb

and called cyclic group facets. Since P (Cn, b) is known in [9] to be full dimensional, the cyclic group
facets are uniquely represented on fixing πb = 1.

Let lin(n) = (1/n, 2/n, ..., n/n = 1) be the coefficient vector of the knapsack equation (2)
normalized by the right-hand side n. We call it lineality. (We also refer to the linear space L
generated by lin(n) as lineality.) The knapsack equation lin(n)t = 1 is a cyclic group facet of
the master group polyhedron denoted by P (Cn+1, n), which Gomory [9] called the mixed integer
cut, and the knapsack facets πt ≥ 1 of P (K(n)) are the cyclic group facets adjacent to the mixed
integer cut. That is, P (K(n)) is a cyclic group facet lin(n) for P (Cn+1, n) and the cyclic group
facets adjacent to lin(n) for P (Cn+1, n) are the knapsack facets for P (K(n)). The nontrivial facets
of P (Cn+1, n) are the extreme points π of the bounded polyhedron

Π(Cn+1, n) =
{
π ∈ RCn+1−{0} : πn = 1, (49)

π ≥ 0, (50)

πi + πj = πn if i+ j ≡ n mod n+ 1, (51)

πi + πj ≥ πk if i+ j ≡ k mod n
}
, (52)
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where none of i, j, k is n. The nonnegativity constraints (50) are known in [21] to be redundant.
Aráoz [1] first characterized the knapsack facets in sub-additive relations. The polar cone

S(K(n)) ⊆ Rn of the knapsack facets for P (K(n)) is given by the complementarity constraints (53)
and the sub-additive relations (54),

πi + πn−i = πn for i = 1, ...,
⌊n

2

⌋
, (53)

πi + πj ≥ πi+j whenever i+ j < n, (54)

and a defining set of rays π of S(K(n)) is shown in [1] to represent all the knapsack facets

n∑
i=1

πiti ≥ πn.

The knapsack facets ξ = −π can be obtained from the extreme points π of the polar cone
Πξ(K(n)) fixing π1 = 0 and πn = −1; i.e.,

−ξ = π ∈ Πξ(K(n)) = S(K(n)) ∩ {π : π1 = 0} ∩ {π : πn = −1}.

Thus, −ξ is in the extreme ray of the translated cone S(K(n)) ∩ {π : πn = −1} going through
−lin(n). Although Πξ(K(n)) has polynomially many constraints, it has exponentially many ex-
treme points and the extreme points π correspond to the knapsack facets πt ≥ −1. (Group facets
and knapsack facets are known in Gomory-Johnsons papers (for example, Example 4.6 of [11]) to
be exponentially many.)

Shooting in the direction v ≥ 0 is equivalent to maximizing vξ subject to (5)-(8), or solving the
shooting LP

min
{
vπ : π ∈ Πξ(K(n)) = S(K(n)) ∩ {π : π1 = 0} ∩ {π : πn = −1}

}
. (55)

The optimal solution ξ = −π to the problem is the knapsack facet ξt ≤ 1 hit by shooting in the
direction v ≥ 0; i.e., if we shoot an arrow at the knapsack facets in direction v from the origin,
the facet ξt ≤ 1 is the first facet hit by the arrow. The system of relations (53)-(54) defining the
polar cone include many redundant relations. By deleting the redundant relations, we can identify
a minimal set of relations to describe S(K(n)) and develop a fast shooting linear programming
formulation.4

To identify a minimal description of S(K(n)), we use the sub-additive representation πt ≥ 1 of
the knapsack facets fixing πn = 1 and define the natural inner point

π̇ = (π̇i = 1/2 for i 6= n; π̇n = 1)

which satisfies all the sub-additive relations (54) as strict inequalities. In the following we provide
a minimal description of Π(K(n)) = S(K(n)) ∩ {π : π1 = 1/2} ∩ {π : πn = 1} moving the natural
inner point π̇ out of each necessary relation. Note that Πξ(K(n)) and Π(K(n)) are translated on
S(K(n)) ∩ {π : πn = 0} and scaled to satisfy(

Πξ(K(n)) + lin(n)
)(1

2
− 1

n

)
=

1

n

(
Π(K(n))− lin(n)

)
. (56)

4In this paper, a minimal representation (or description) is not minimal as in minimal inequalities defined by
Gomory and Johnson [10] but in a minimal set of constraints required for S(K(n)).
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 lin(n)

0

 - lin(n) π1–

 π1+

0

 π1+
– lin(n)

π1–
+ lin(n)

π1–
+ lin(n)  π1+

– lin(n)

 π1

 π2

π2–
+ lin(n)

 π2+
– lin(n)

Figure 2: The restriction of S(K(6)) on (π1, π2, π6)-space

In Figure 2, Πξ(K(6)) and Π(K(6)) are translated and lie on the cone S(K(6)) ∩ {π : π6 = 0}
pointed at the origin. The 3-dimensional cone on the left depicts S(K(6)) containing three parallel
2-dimensional layers defined by {π : πn = 1}, {π : πn = 0} and {π : πn = −1}. The two extreme
rays π of each layer represent the knapsack facets for P (K(6)) in πt ≥ πn. On the right, the figure
depicts two parallel line segments in the cone which are

Π(K(6))− lin(6) = [π1+ − lin(6), π2+ − lin(6)]

=

[(
1

2
− 1

6
,
1

3
− 2

6
,
1

2
− 3

6
,
2

3
− 4

6
,
1

2
− 5

6
, 1− 6

6

)
,

(
1

2
− 1

6
, 1− 2

6
,
1

2
− 3

6
, 0− 4

6
,
1

2
− 5

6
, 1− 6

6

)]
=

[(
1

3
, 0, 0, 0,−1

3
, 0

)
,

(
1

3
,
2

3
, 0,−2

3
,−1

3
, 0

)]
,

Πξ(K(6)) + lin(6) = [π1− + lin(6), π2− + lin(6)]

=

[(
−0 +

1

6
,−1

3
+

2

6
,−1

2
+

3

6
,−2

3
+

4

6
,−1 +

5

6
,−1 +

6

6

)
,(

−0 +
1

6
,−0 +

1

3
,−1

2
+

3

6
,−1 +

4

6
,−1 +

5

6
,−1 +

6

6

)]
=

[(
1

6
, 0, 0, 0,−1

6
, 0

)
,

(
1

6
,
1

3
, 0,−1

3
,−1

6
, 0

)]
.

For more details of parallel translation, the readers may refer to Shim [19].
The next theorem provides a minimal representation of Π(K(n)).

Theorem 3.1 A minimal representation of Π(K(n)) is the system described by π1 = 1/2, πn = 1
and the complementary constraints (53) along with the inequalities (54) replaced by

πi + πj ≥ πi+j , for i ≤ j < i+ j < n/2, (57)

πi + πj + πn−i−j ≥ πn, for i ≤ j ≤ n− i− j < n/2, (58)

and 2πn/4 ≥ πn/2 =
1

2
, if n ≡ 0 mod 4. (59)
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In the following, we develop results that imply Theorem 3.1, which we later restate as Corollary 3.5.
From (56), we see that the shooting LP (55) is equivalent to

min
{
vπ : π ∈ Π(K(n)) = S(K(n)) ∩ {π : π1 = 1/2} ∩ {π : πn = 1}

}
. (60)

To identify a minimal description of S(K(n)), assuming n ≥ 3, we define the index sets for the
left-hand sides of complementarities (53) with indices < n/2 by O and with indices > n/2 by X;
i.e.,

O = {i : i < n/2},
X = {n− i : i < n/2}.

We project out the X-variables by substituting πn−i = πn − πi from (53) into the constraints in
(54) for i < n/2.

Theorem 3.2 The two types of inequalities (57), (58) and the additional inequality (59) in case
of n divisible by 4 completely describe S(K(n)) with the complementarities (53).

Proof.
If n is even, we distinguish the half h = n/2 and also project out πh by substituting the

complementarity constraint
2πh = πn. (61)

Then, S(K(n)) is equivalent to the projected image

S(K(n))|O∪{n} ⊆ RO∪{n}

onto RO∪{n}.
If n is odd, each knapsack subadditivity constraint (54) becomes one of (57) or (58) If n is even,

the knapsack subadditivity constraints (54) without any term of πh are of the two types (57) and
(58). Any subadditivity constraints containing πh have the form

πi + πh−i ≥ πh = πn/2,

which is redundant if i > h − i because it can be written as the average of 2πh−i ≥ πn−2i and
2πi + πn−2i ≥ πn. We therefore have at most one additional inequality (59).

Theorem 3.2 reduces the shooting LP as follows:

Theorem 3.3 Let v ≥ 0 and let wi = vi − vn−i for 1 < i < n/2. The restriction π|O\{1} of the
optimal solution π to (60) is the optimal solution to

min

 ∑
i∈O\{1}

wiπi : (πi : i ∈ O \ {1}) ∈ Π(K(n))|O\{1}

 , (62)

where Π(K(n))|O\{1} is described by fixing π1 = 1/2 and πn = 1 by (57) and (58) and by (59) if n
is a multiple of 4.
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The number of constraints (57)-(59) is much smaller than the number of constraints (54) and the
number of variables of (62) is only a half of that of (60). Thus solving (62) described by (57)-(59)
will be faster than solving (60) described by (54). We verify this experimentally in Section 4.

Since π̇ satisfies (54) as strict inequalities, the projected cone S(K(n))|O∪{n} is full dimensional
with the restriction π̇|O∪{n} of π̇ to O ∪ {n} as an interior point,

π̇|O∪{n} = (π̇i = 1/2 for i < n/2; π̇n = 1).

Therefore the dimension of S(K(n)) is dn/2e. By considering modifications of π̇|O∪{n} we show
that the two types of inequalities (57), (58) and the additional inequality (59) are facet-defining
for S(K(n))|O∪{n}, and therefore form a minimal description of S(K(n)) together with the comple-
mentarity constraints (53). We say that π̂ is a certificate for a constraint of S(K(n))|O∪{n} to be
facet-defining if π̂ violates that constraint, but satisfies all other constraints. The intersection point
of the line segment between π̂ and π̇ with the hyperplane of the constraint satisfies the constraint
as equality and the other constraints as strict inequality.

Theorem 3.4 Each inequality in (57)-(59) is facet-defining for S(K(n)).

Proof. For πi0 + πj0 ≥ πi0+j0 with i0, j0, i0 + j0 ∈ O, we change at most three components of π̇
to get an infeasible solution

π̂ = (π̂i0 = π̂j0 = 1/3, π̂i0+j0 = 3/4),

where the other components remain the same as the corresponding components of π̇. The infeasible
solution π̂ is shown to be feasible for all the other inequalities in (57):

π̂i + π̂j =
1

3
+

1

3
≥ 1

2
≥ π̂i+j if i0 6= j0, i = j = i0,

π̂i + π̂j ≥
1

3
+

1

2
≥ 3

4
≥ π̂i+j otherwise.

It is also feasible for all the inequalities in (58):

π̂i + π̂j + π̂n−i−j ≥
1

3
+

1

3
+

1

3
= 1 = π̂n.

The additional inequality (59) is trivially feasible.
For πi0 + πj0 + πk0 ≥ πn with i0 ≤ j0 ≤ k0 and i0 + j0 + k0 = n, we set π̂j0 = 1/4 in case

i0 = j0 = k0 = n/3. Otherwise, we set

π̂ =

(
π̂j0 =

1

3
; π̂i0 =

1

4
if i0 6= j0; π̂k0 =

1

4
if k0 6= j0

)
where the other components are same as the corresponding components of π̇. It is infeasible for
the inequality and feasible for all the inequalities in (57). Since all the other inequalities in (58)
contain at least one term equal to 1/2, the point π̂ is feasible for all of them. The inequality (59)
is trivially feasible here again.

In case n is a multiple of 4, the additional inequality (59) has π̂n/4 = 0 in which the other
components are the same as the corresponding components of π̇. It is trivially infeasible for (59)
and feasible for all the inequalities in (57). Since πn/4 comes up at most once in the left-hand side
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of each inequality in (58), π̂ is feasible for all the inequalities, completing the proof of Theorem 3.4.

Thus, we arrive at the following minimal description of S(K(n)), which directly implies our
desired result, Theorem 3.1.

Corollary 3.5 The two types of inequalities (57), (58) and the additional inequality (59) in case
of n divisible by 4 form a minimal description of S(K(n)) with the complementarities (53).

We now compare the number of constraints from (57)-(59) to that of constraints (54) and see
that the ratio is asymptotically 1/3. We can calculate the asymptotic ratio as follows: The number
of constraints (54) is ∑

2≤k<n
|{i : 1 ≤ i ≤ j < k = i+ j < n}|

=
∑

2≤k<n

∣∣∣∣{i : 1 ≤ i ≤
⌊
k

2

⌋}∣∣∣∣ =
∑

2≤k<n

⌊
k

2

⌋
∼ n2

4
.

The number of constraints (57) is∑
2≤k<n/2

|{i : 1 ≤ i ≤ j < k = i+ j < n/2}|

=
∑

2≤k<n/2

∣∣∣∣{i : 1 ≤ i ≤
⌊
k

2

⌋}∣∣∣∣ =
∑

2≤k<n/2

⌊
k

2

⌋
∼ n2

16
,

and the number of constraints (58) is∑
n/3≤k<n/2

|{j : 1 ≤ i ≤ j ≤ k and i+ j + k = n}|

=
∑

n/3≤k<n/2

∣∣∣∣{j :

⌈
n− k

2

⌉
≤ j ≤ k

}∣∣∣∣ =
∑

n/3≤k<n/2

(
k −

⌈
n− k

2

⌉
+ 1

)
∼ n2

48
.

Thus, the asymptotic ratio is 1/3 = (1/4) + (1/16 + 1/48).5

The number of variables of the reduced shooting LP (62) is half that of the original shooting
LP (60) and the number of constraints is one third of the original. As we confirm computationally
in the following section, Theorem 3.1 allows us to perform the shooting experiment more efficiently
and thus enables computations for larger values of n.

4. Computations with the reduced shooting LP

One motivation for finding a minimal description for S(K(n)) is to improve the speed of shoot-
ing experiments. We now describe computational tests used to evaluate the magnitude of this

5The asymptotic ratio is provided by Kangbok Lee at POSTECH, South Korea.
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Time for 1000 shots (sec.)

Dimension Reduced formulation Original formulation

n = 100 3.5 8.2
n = 150 9.2 23.1
n = 200 19.5 50.2
n = 250 36.6 101.3
n = 300 61.8 180.4

Table 1: Comparison of computation time required for 1000 shots.

improvement in practice. We refer to the formulation for S(K(n)) given by (53) and (54) (as in
[1]) as the original formulation, and the minimal description from Corollary 3.5 as the reduced
formulation.

For the shooting experiment, we optimize a linear objective function over the feasible region
given by S(K(n)). The random objective function v ≥ 0 is chosen from the non-negative orthant
uniformly at random with respect to the n-dimensional sphere. In the reduced formulation v is
mapped to the modified objective function w as described in Theorem 3.3. We compare the original
and reduced formulations for various sizes of n, and measure the time required to evaluate 1000
shots.

All experiments were performed on a computer with a 3.4Ghz Intel i7 CPU running Ubuntu
12.04 LTS Linux. The Python interface of the Gurobi (version 5.0.2) LP solver was used for all
experiments. In studies such as [4, 20] it is often desirable to perform a greater number of shots, such
as one million, but 1000 shots are sufficient to compare the running time of the two formulations,
which is the goal of our test. We note that when multiple shots are performed on S(K(n)) for
the same value of n, the LPs solved for different shots share the same constraints and differ only
in their objective function. This applies to both formulations. Therefore we update the model by
changing the objective function and reoptimize. This allows the solver to take advantage of the
existing construction of the constraints and use warm-start information from the previous shot to
accelerate the solution process.

Solution times are presented in Table 1 and in Figure 3. The values of n range from 100
up to 300, in increments of 10. (Table 1 lists a subset of n’s in increments of 50.) Times are
given in seconds and represent the time to solve 1000 shooting LPs. We observe that the reduced
formulation gives a significant performance increase over the original formulation, with a speedup
factor of approximately three on the larger models.

We use the reduced formulation to perform the shooting experiment with a million shots each
for n as large as 500 (see Figure 4). Our experiments confirm that 1/k-facets for k dividing 6 or
8 absorb over 75% of a million shots (an observation first made in [4] for n ≤ 150). The strength
of these facets becomes particularly useful because they can be separated efficiently as shown in
Section 3. Our results suggest that 1/k-facets for k dividing 6 or 8 may be effective in practice
when solving knapsack problems.
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Figure 3: Comparison of computation time required for 1000 shots.
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Figure 4: Results from fast shooting experiments for large dimension

5. Relating super-additive and sub-additive characterizations of knapsack facets

In this section, we show the relationship between the sub-additive representation (πt ≥ 1) of
a knapsack facet and the super-additive representation ξt ≤ ξn. The complementarity constraints
(51) are exactly (53) and the sub-additive relations (52) include the sub-additive relations (54) of
S(K(n)) which we will call knapsack sub-additive relations. The sub-additive relations (52) which
are not in (54) can be written as

πi + πj ≥ πi+j−n−1 whenever i+ j > n+ 1, (63)

which we will call non-knapsack sub-additive relations. Thus, Π(Cn+1, n) is contained in the trans-
lated cone

S(K(n)) ∩ {π : πn = 1} = S(K(n)) ∩ {π : πn = 0}+ lin(n).

In fact, Π(Cn+1, n) is known in [19] to be full dimensional in S(K(n)) ∩ {π : πn = 1}.
In this paper, we characterized the knapsack facets by super-additive relations of ξ = −π

representing a knapsack facet in ξt ≤ ξn with fixing ξ1 = 0 and ξn = 1. Hunsaker [15] first
described the knapsack facets by the non-trivial facets of the packing knapsack problem defined by
(2)-(4) with equation (2) replaced by the packing inequality

n∑
i=2

iti ≤ n.

It is equivalent to fixing the coefficient ξ1 = 0 of a knapsack facet ξt ≤ ξn as t1 is a slack variable.
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 lin(n)

0

 - lin(n)

 π0
 = - ξ + lin(n)

π-
 = - ξ

 π+
 = - ξ + 2 lin(n)

 π+
 πξ

 lin(n)

Figure 5: S(K(6)) and Π(C7, 6) ⊂ S(K(6)) ∩ {π : π6 = 1}

In the remainder of this section, we geometrically show in the dual space, so called π-space,
how to transform knapsack facets and cyclic group facets interchangeably in order to invoke strong
knapsack facets from previously known strong cyclic group facets, as Aráoz, Evans, Gomory and
Johnson [2] identified knapsack facets from cyclic group facets. It is shown by Shim [19] and Chopra,
Shim and Steffy [4] that an extreme point π of Π(Cn+1, n) is adjacent to extreme point lin(n) if
and only if cyclic group facet πt ≥ 1 is adjacent to lin(n)t ≥ 1. It allows exploring the relation
between the knapsack facets for P (K(n)) and the cyclic group facets for P (Cn+1, n) as points π in
the space containing the polar cone S(K(n)), which Gomory, Johnson and Evans [13] referred to
as π-space. For more details of the adjacency of group facets, we refer to Tyber and Johnson [23].

Since the cyclic group facets for P (Cn+1, n) which are adjacent to lin(n) are known in [2] to be
the knapsack facets for P (K(n)), the extreme points π adjacent to lin(n) in Π(Cn+1, n) represent
the knapsack facets πt ≥ 1. Therefore, we can transform a knapsack facet ξ to the corresponding
cyclic group facet πξ in π-space by shooting6 from lin(n) at the translate π+ = −ξ + 2lin(n) of
π− = −ξ (or along the edge from lin(n) through π+) and seeing the hitting point πξ where a
non-knapsack sub-additive relation is first hit. The first hit non-knapsack sub-additive relation
(63) is identified by the slack function ∆(ξ) = mini+j>n+1 ξi+j−n−1 − ξi − ξj .

Figure 5 continues to depict the same 3-dimensional cone on the left as shown in Figure 2. The
red line segment on the right depicts Πξ(K(6)) + 2lin(6). Note that π+, π0 and π− = π1− = −ξ
represent the same knapsack facet ξt ≤ ξn = 1 where π1− in Figure 2 was

π1− =

(
−0,−1

3
,−1

2
,−2

3
,−1,−1

)
.

The quadrilateral on the right in the figure is Π(C7, 6) contained in S(K(6)) ∩ {π : πn = 1}. The
thick lines and the thin lines depict the knapsack sub-additive relations

2π1 ≥ π2,
3π2 ≥ π6 (⇔ 2π2 ≥ π4 corresponding to 2 + 2 = 4),

6This shooting at sub-additive relations here is not the shooting at knapsack facets discussed in the previous
sections.
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and the non-knapsack sub-additive relations

π1 + 2π2 ≤ 2 (⇔ 2π4 ≥ π1 corresponding to 4 + 4 ≡ 1 mod 7),

π1 ≤ 3/4 (⇔ π3 + π5 ≥ π1 corresponding to 3 + 5 ≡ 1 mod 7).

All points π on the edge from lin(6) through π+ represent the same knapsack facet ξt ≤ ξn = 1 in
πt ≥ πn = 1. In particular, πξ is the cyclic group facet representing the knapsack facet. In order
to identify πξ, we shoot an arrow from lin(n) at π+ = −ξ + 2lin(n) and see the point πξ where a
non-knapsack relation is first hit.

The following theorem states a transformation by which our representation ξt ≤ 1 of a knapsack
facet can be converted into a cyclic group facet πξt ≥ 1 of P (Cn+1, n).

Theorem 5.1 Let ∆(ξ) = mini+j>n+1 ξi+j−n−1 − ξi − ξj and let

πξ =
n+ 1

n ·∆(ξ) + (n+ 1)
· (ξ − lin(n)) + lin(n).

Then, the knapsack facet ξt ≤ 1 with ξ1 = 0 and ξn = 1 can be alternatively represented by πξt ≥ 1
which is a cyclic group facet for P (Cn+1, n).

Proof. The cyclic group facet πξ for P (Cn+1, n) corresponding to a knapsack facet ξ for P (K(n)) is
the point in S(K(n))∩{π : πn = 1} where shooting an arrow from lin(n) at π+ = −ξ+2lin(n) hits
the first non-knapsack sub-additive relation as illustrated on the right in Figure 5. To perform the
shooting, we translate π+ and πξ to π0 = π+−lin(n) = −ξ+lin(n) and ~πξ = πξ−lin(n) in the cone
S(K(n)) ∩ {π : πn = 0}. We see that π0 spans an extreme ray of the cone S(K(n)) ∩ {π : πn = 0}
representing the knapsack facet ξt ≤ 1 in π0t ≥ π0n = 0. The translate ~πξ of πξ on the cone
S(K(n)) ∩ {π : πn = 0} is in the extreme ray spanned by π0 and can be written as

~πξ = rπ0 (64)

for some r > 0. We only need to show

r =
n+ 1

−n∆(ξ)− (n+ 1)
=

n+1
n

−∆(ξ)− n+1
n

where ∆(ξ) = mini+j>n+1 ξi+j−n−1 − ξi − ξj . Equivalently, we show

r ·
(

min
i+j>n+1

{ξi+j−n−1 − ξi − ξj}+
n+ 1

n

)
+
n+ 1

n
= 0. (65)

The first non-knapsack sub-additive relation hit by the shooting is satisfied as equality, and πξ

must satisfy

πξi + πξj ≥ π
ξ
i+j−n−1 for every pair of i and j with i+ j > n+ 1,

πξi + πξj = πξi+j−n−1 for a pair of i and j with i+ j > n+ 1.

That is, πξ must satisfy

min
i+j>n+1

{
πξi + πξj − π

ξ
i+j−n−1

}
= 0. (66)
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It implies (65) as follows:

r ·
(

min
i+j>n+1

{ξi+j−n−1 − ξi − ξj}+
n+ 1

n

)
+
n+ 1

n

= r · min
i+j>n+1

{
−ξi − ξj + ξi+j−n−1 +

n+ 1

n

}
+
n+ 1

n

= r · min
i+j>n+1

{(
−ξi +

i

n

)
+

(
−ξj +

j

n

)
−
(
−ξi+j−n−1 +

i+ j − n− 1

n

)}
+
n+ 1

n

= r · min
i+j>n+1

{
(−ξ + lin(n))i + (−ξ + lin(n))j − (−ξ + lin(n))i+j−n−1

}
+
n+ 1

n

= r · min
i+j>n+1

{
π0i + π0j − π0i+j−n−1

}
+
n+ 1

n

= min
i+j>n+1

{(
rπ0i +

i

n

)
+

(
rπ0j +

j

n

)
−
(
rπ0i+j−n−1 +

i+ j − n− 1

n

)}
= min

i+j>n+1

{(
rπ0 + lin(n)

)
i
+
(
rπ0 + lin(n)

)
j
−
(
rπ0 + lin(n)

)
i+j−n−1

}
= min

i+j>n+1

{
πξi + πξj − π

ξ
i+j−n−1

}
= 0,

completing the proof of the theorem.

On the other hand, given a cyclic group facet πt ≥ πn = 1 for P (Cn+1, n), the corresponding
knapsack facet for P (K(n)) is alternatively represented in ξπt ≤ ξπn = 1 with ξπ1 = 0 as follows:

Theorem 5.2 Let πt ≥ πn = 1 be a cyclic group facet adjacent to lin(n) for P (Cn+1, n). Then, it
is a knapsack facet ξπt ≤ ξπn = 1 with ξπ1 = 0 for P (K(n)) given by

ξπ = − 1

n
· π − lin(n)

π1 − 1
n

+ lin(n).

Its proof is similar to the proof of Theorem 5.1.
Figure 6 illustrates a facet represented in ξ and π interchangeably. In the figure, the coefficients

of π are represented in blue and the coefficients of ξ are represented in red. For the knapsack facet
illustrated in the figure, one representation can be transformed to the other using Theorems 5.1
and 5.2.

6. Conclusion

In this paper we exploit the fact that knapsack inequalities can be represented using either a
sub-additive or super-additive characterization. In particular, we focus on 1/k-inequalities for k
dividing 6 or 8. We obtain a concise characterization of the super-additive version of these knapsack
inequalities. This concise characterization allows us to efficiently separate these inequalities when
solving knapsack problems in practice.

We use the sub-additive characterization of knapsack inequalities to develop a concise represen-
tation of the LP to be solved to identify the facet hit when performing the shooting experiment.
This characterization allows us to significantly increase the size of problems over which we are able
to perform the shooting experiment.
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Figure 6: Coefficient vectors of a knapsack facet in ξ- and π-representations
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Appendix: The 1/8-facets Revisited

We prove Theorem 2.7 by enumerating all types of super-additive relations binding at ξ8-(am).
Suppose that ξ is a solution to (5)-(8) that is binding at the same super-additive relations as ξ8-(am).
If ξ8-(am) satisfies as equality a super-additive relation

1

8
+

1

8
= ξ

8-(am)
i + ξ

8-(am)
j = ξ

8-(am)
i+j =

2

8
,

those relations must include

1

8
+

1

8
= ξ8-(am)

a1 + ξ8-(am)
a1 = ξ8-(am)

a2 =
2

8
.

That is equivalent to Relation 1 of Theorem 2.7; i.e.,

2a1 ≤ a3 − 1.

Relation 1 through 5 of Theorem 2.7 include all possible cases as follows:

1

8
+

1

8
= ξ

8-(am)
i + ξ

8-(am)
j = ξ

8-(am)
i+j =

2

8
⇔ a1 + a1 ≤ a3 − 1⇔ Relation 1

1

8
+

2

8
= ξ

8-(am)
i + ξ

8-(am)
j = ξ

8-(am)
i+j =

3

8
⇔ a1 + a2 ≤ a4 − 1⇔ Relation 2

1

8
+

3

8
=

4

8
⇔ a1 + a3 ≤ a5 − 1⇔ a1 + a3 ≤ n+ 1− a4 − 1 = n− a4 ⇔ Relation 4

1

8
+

4

8
=

5

8
⇔ a1 + a4 ≤ a6 − 1⇔ a1 + a4 ≤ n+ 1− a3 − 1 = n− a3 ⇔ Relation 4

1

8
+

5

8
=

6

8
⇔ a1 + a5 ≤ a7 − 1⇔ a1 + n+ 1− a4 ≤ n+ 1− a2 − 1⇔ Relation 2

1

8
+

6

8
=

7

8
⇔ a1 + a6 ≤ a8 − 1⇔ a1 + n+ 1− a3 ≤ n+ 1− a1 − 1⇔ Relation 1

2

8
+

2

8
=

4

8
⇔ a2 + a2 ≤ a5 − 1⇔ 2a2 ≤ n+ 1− a4 − 1 = n− a4 ⇔ Relation 3

2

8
+

3

8
=

5

8
⇔ a2 + a3 ≤ a6 − 1⇔ a2 + a3 ≤ n+ 1− a3 − 1 = n− a3 ⇔ Relation 5

2

8
+

4

8
=

6

8
⇔ a2 + a4 ≤ a7 − 1⇔ a2 + a4 ≤ n+ 1− a2 − 1 = n− a2 ⇔ Relation 3

2

8
+

5

8
=

7

8
⇔ a2 + a5 ≤ a8 − 1⇔ a2 + n+ 1− a4 ≤ n+ 1− a1 − 1⇔ Relation 2

3

8
+

3

8
=

6

8
⇔ a3 + a3 ≤ a7 − 1⇔ a3 + a3 ≤ n+ 1− a2 − 1 = n− a2 ⇔ Relation 5

3

8
+

4

8
=

7

8
⇔ a3 + a4 ≤ a8 − 1⇔ a3 + a4 ≤ n+ 1− a1 − 1 = n− a1 ⇔ Relation 4.

Recall that ξ is uniquely determined by three variables ξa1 , ξa2 and ξa3 , which are determined
by any system of three (independent) equations from the following five equations equivalent to
Relation 1 through Relation 5 of Theorem 2.7:

1. ξa1 + ξa1 = ξa1+a1 = ξa2
2. ξa1 + ξa2 = ξa1+a2 = ξa3
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3. ξa2 + ξa2 = ξa2+a2 = 1/2

4. ξa1 + ξa3 = ξa1+a3 = 1/2

5. ξa2 + ξa3 = ξa5 = 1− ξa3


