On the problem of determining which (n, k)-star graphs are Cayley graphs

Eddie Cheng • Li Li • László Lipták • Sangho
Shim • Daniel E. Steffy

October 13, 2014

Abstract

In this paper we work to classify which of the (n, k)-star graphs, denoted by $S_{n, k}$, are Cayley graphs. Although the complete classification is left open, we derive infinite and non-trivial classes of both Cayley and non-Cayley graphs. We give a complete classification of the case when $k=2$, showing that $S_{n, 2}$ is Cayley if and only if n is a prime power. We also give a sufficient condition for $S_{n, 3}$ to be Cayley and study other structural properties, such as demonstrating that $S_{n, k}$ always has a uniform shortest path routing.

Keywords. Interconnection networks, Cayley graphs, vertex-forwarding index, (n,k)-star graphs.

1 Introduction

In the design of parallel computing machines, the first step is to decide how processors are linked. A static interconnection network has processor-to-processor communication links among the processors. For example, they can be used for message-passing architectures. (See [24] for details.) The underlying graph topology is the corresponding interconnection network. The class of n-cubes (or hypercubes) was the first major class of interconnection networks. The star graph proposed by Chiang and Chen 11 has many advantages over the n-cube such as lower degree and smaller diameter. Different aspects of star graphs and related interconnection networks are studied extensively, including topological issues $20,30,34,38$, broadcasting issues [27,29,35], routing issues when faults
are present 14, 16, 17, and many other additional topics [3, 4, 7, 25, 26]. Star graphs are governed by one parameter. The star graph S_{n} has $n!$ vertices and it is an $(n-1)$-regular graph. The n-cube, on the other hand, is an n-regular graph on 2^{n} vertices. Although star graphs are better than n-cubes in many aspects, they do suffer from a scaling problem as the gap between two consecutive factorials is large. For this reason, two generalizations were developed, one of which is the class of (n, k)-star graphs 11. An (n, k)-star graph $S_{n, k}$ is governed by two parameters n and k, where $1 \leq k<n$. Moreover, $S_{n, k}$ is an ($n-1$)-regular graph on $n!/(n-k)$! vertices; in particular, $S_{n, n-1}$ is isomorphic to the star graph S_{n}.

The star graph S_{n} is so named due to its generating graph being the star $K_{1, n-1}$. Given the star $K_{1, n-1}$, we label the vertices using the symbols $1,2, \ldots, n$ with 1 being the center of the star. The graph S_{n} consists of n ! vertices, labeled by the permutations on n symbols, usually $1,2, \ldots, n$. Two vertices of S_{n} are adjacent if one permutation can be obtained from the other by exchanging the symbols in position 1 and position i for some $2 \leq i \leq n$. (Here $1,2,3, \ldots, n$ are used as position numbers as well as symbols in permutations.) Note that $(1, i)$ for $2 \leq i \leq n$ are precisely the edges in our labeled $K_{1, n-1}$. Hence in a sense $K_{1, n-1}$ generates S_{n} and thus it is called the star graph, although a more proper term would be the star-generated graph.

The (n, k)-star graph $S_{n, k}$, where $1 \leq k<n$, has all k-permutations on the ground set $\{1,2, \ldots, n\}$ as its vertices. (A k-permutation on $\{1,2, \ldots, n\}$ is an ordered k-tuple obtained by first choosing k symbols from this set and then permuting the symbols.) There are two types of edges in $S_{n, k}$. A star edge is an edge between two vertices where one k-permutation can be obtained from the other by exchanging the symbols in position 1 and position i for some $2 \leq i \leq$ k. A residual edge is an edge between two vertices where one k-permutation can be obtained from the other by replacing the symbol in position 1 by a symbol not in the k-permutation. Clearly a vertex in $S_{n, k}$ is incident to $k-1$ star edges and $n-k$ residual edges. It is also clear that $S_{n, n-1}$ is isomorphic to S_{n}. Moreover, $S_{n, 1}$ is the complete graph on n vertices, K_{n}. Since (n, k)-star graphs were introduced to address shortcomings of star graphs, they have been studied extensively in a wide range of topics $[2,6,10,13,21,31,36,37,39$.

Interconnection networks usually have parameters in which the number of vertices is exponential or even combinatorial (that is, expressions involving factorials) with respect to these parameters. One basic task is to find good shortest path routing algorithms. However, the restriction here is that the running time has to be polynomial with respect to these parameters and not the number of vertices. Moreover, such algorithms need to be distributive in nature. So to route from a source to a sink, at every step, one can only use the information of the source, the sink and the current vertex (or information of all the vertices at a fixed distance from the current vertex) to determine the next step. This is impossible unless local information yields global information. In other words, interconnection networks should have symmetry. This naturally leads to using Cayley graphs as interconnection networks.

Let G be a finite group and S be a set of elements of G such that the identity of the group does not belong to S. The Cayley graph $\Gamma(G, S)$ is the directed graph whose vertex set is G, and there is an arc from u to v if and only if there is an $s \in S$ such that $v=u s$. The graph $\Gamma(G, S)$ is connected if and only if S is a generating set for G. A Cayley graph is always vertex transitive, so it is maximally arc-connected if it is connected; however, its vertex connectivity may be low. If $s \in S$ if and only if $s^{-1} \in S$, then there is an arc from u to v if and only if there is an arc from v to u, so $\Gamma(G, S)$ can be simplified to be an undirected graph by replacing each such pair of arcs with an undirected edge. Thus S_{n} is a Cayley graph in which G is the symmetric group on $\{1,2, \ldots, n\}$, and S consists of the transpositions of the form $(1, i)$ for all $2 \leq i \leq k$. Note that these ($1, i$)'s correspond precisely to the edges of $K_{1, n-1}$ that we have considered. Indeed, another generalization of S_{n} is to replace $K_{1, n-1}$ by a tree on n vertices and consider the edges of this tree as transpositions. This is the class of Cayley graphs generated by transposition trees [1,5] 33]. It is worth noting that from pure combinatorics, one can study factorizations of permutations into transpositions of special forms that are related to star graphs or "factorization" of k-permutations 2, 22.

Although many classes of interconnection networks such as n-cubes, star graphs, meshes and tori are Cayley graphs, it has remained an unanswered question whether the (n, k)-star graphs are Cayley graphs. In fact, to the best of our knowledge, this work is the first progress on this problem, beyond the cases when $k=n-1$, where the (n, k)-star graph is isomorphic to the star graph, when $k=1$, where the (n, k)-star graph is the complete graph on n vertices, and the case when $k=n-2$. In this paper, we give a complete classification of when $S_{n, 2}$ is a Cayley graph as well as partial results for $S_{n, 3}$. Moreover, we give evidence of why this problem is difficult. There is no known efficient way of determining whether or not a graph is Cayley. (Even if such an algorithm was known, it might not be easy to apply it as these interconnection networks have many vertices with respect to their parameters.) Another technique is to apply Sabidussi's Theorem [28, which is difficult to use in general. Yet another technique is to consider uniform shortest path routings. This gives a necessary condition for a graph to be Cayley. Indeed, it was once conjectured that such a condition is necessary and sufficient but was later shown to be false. In Section 2 we show that $S_{n, k}$ satisfies this uniform shortest path routings necessary condition, which is a strong indication of why the the corresponding classification problem is difficult. In Section 3 , we give the classification for $S_{n, 2}$ together with partial results for $S_{n, 3}$ and we give concluding remarks in Section 4

2 Structural Properties of $S_{n, k}$

2.1 Uniform shortest path routings

A routing in a graph $G=(V, E)$ is a set of paths $R=\left\{P_{u v} \mid(u, v) \in V \times V, u \neq\right.$ $v\}$ where each path $P_{u v}$ starts at u and ends at v. A good routing should not load any vertex too much, in the sense that not too many paths specified by the routing should go through it. In order to measure the load of a vertex, Chung, Coffiman, Reiman and Simon 12 proposed the notion of the forwarding index. The vertex-forwarding index of G with respect to R is defined as the maximum number of paths in R passing through any vertex of G. The vertex-forwarding index of G, denoted by $\xi(G)$, is defined as the minimum vertex forwarding index of G with respect to R over all routings R of G.

A routing R is a shortest path routing if each path $P_{u v}$ in R is a shortest u to v path. A shortest path routing is uniform if every node $w \in V$ appears as an internal vertex in exactly the same number of paths in R. In other words, if $l_{R}(u)$ denotes the number of paths in R in which u appears as an internal vertex, then in a uniform shortest path routing $l_{R}(u)$ must be the same for every $u \in V$. The following result bounds the vertex-forwarding index of a graph.

Theorem 1 (Chung et al. $\mathbf{1 2]}$) Let G be a connected graph of order n and let $d_{G}(u, v)$ denote the distance between vertices u and v in G. Then

$$
\frac{1}{n} \sum_{u} \sum_{v \neq u}\left(d_{G}(u, v)-1\right) \leq \xi(G) \leq(n-1)(n-2)
$$

and the lower bound is achieved if and only if there exists a uniform shortest path routing in G. The graph that attains this upper bound is the star $K_{1, n}$.

It is well known that all connected Cayley graphs have uniform shortest path routings 19 . Therefore, since many of the well known interconnection networks are Cayley graphs, including the star graph S_{n} and the n-cube Q_{n}, they have uniform shortest path routings. In fact, it was conjectured that all vertex-transitive graphs contained uniform shortest path routings until a counterexample was given in 2002 in [32]. In this section we show that $S_{n, k}$ always has a uniform shortest path routing, demonstrating that it has a nice "Cayley-like" property. This also means that it will not be possible to show any graphs in this class to be non-Cayley by attempting to show the absence of uniform shortest path routings.

Algorithms to construct shortest paths in $S_{n, k}$ are well known; the original paper defining star graphs 11 defines a greedy shortest path algorithm. Although the description in the original paper gives more freedom of choice in the order of the moves, stated in terms of correcting internal and external cycles, we restate the algorithm in a slightly different format to enforce a precise ordering of the swaps. Our algorithm follows the same pattern and uses a lexicographical tie-breaking rule in case multiple greedy choices are possible.

The algorithm will take a k-permutation on n symbols $u=\left[u_{1}, u_{2}, \ldots, u_{k}\right]$ and repeatedly swap the first symbol with one of the other $k-1$ symbols until a target vertex $v=\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ is reached.

```
Shortest path algorithm in \(S_{n, k}\)
    Input: \((u, v) \in V\left(S_{n, k}\right) \times V\left(S_{n, k}\right), u \neq v\)
    while \(u \neq v\) do
        if \(u_{1}=v_{i}\) for some \(i=2, \ldots, k\) then
            Swap \(u_{1}\) with \(u_{i}\)
        else if \(v_{i} \notin\left\{u_{2}, \ldots, u_{k}\right\}\) for some \(i=2, \ldots, k\) then
            Choose the smallest such \(i\), replace \(u_{1}\) with \(v_{i}\)
        else if \(v_{i} \neq u_{i}\) for some \(i=2, \ldots, k\) then
            Choose the smallest such \(i, \operatorname{swap} u_{1}\) with \(u_{i}\)
        else if \(u_{1} \neq v_{1}\) then
            Replace \(u_{1}\) with \(v_{1}\)
        end if
    end while
```

Note that given u and v, this algorithm unambiguously produces a shortest $u-v$ path; we call any path produced by the algorithm a canonical shortest path. We make the important observation that the algorithm depends in no way on what the actual labels of the symbols in the k-permutations are but only on their relative positions.

Theorem 2 For any $n \geq k \geq 2$, the graph $S_{n, k}$ has a uniform shortest path routing.

Proof We show that the set of canonical shortest paths is a uniform shortest path routing. First, let $V=V\left(S_{n, k}\right)$ and assign
$R=\left\{P_{u v} \mid(u, v) \in V \times V, u \neq v, P_{u v}\right.$ is the canonical shortest path from u to v in $\left.S_{n, k}\right\}$.
By construction, R is a shortest path routing; we are left to show that the routing is uniform. For $u \in V$, let R_{u} be the set of paths in R that contain u as an internal vertex. Let $x, y \in V$, and we show that $\left|R_{x}\right|=\left|R_{y}\right|$ by constructing a bijection between R_{x} and R_{y}; this demonstrates that the load on each vertex is identical.

Let $\pi:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ be a permutation on n symbols that maps x to y, i.e., if we replace each number in x with its image under π, we get y. Note that there may be many choices for π. The permutation π induces a map $\sigma_{\pi}: V \rightarrow V$ defined the same way: for any vertex $v \in V$, replace each number in v by its image under π, and the resulting k-permutation is $\sigma_{\pi}(v)$. It is easy to see that for $u, v \in V$, the vertex $\sigma_{\pi}(u)$ is connected to $\sigma_{\pi}(v)$ by a star edge or residual edge in $S_{n, k}$ if and only if the same type of edge connects u and v in $S_{n, k}$. Therefore σ_{π} gives an automorphism on $S_{n, k}$. Letting P be the set of all paths in $S_{n, k}$ we define $f: P \rightarrow P$ as follows: for $p=\left(p_{1}, p_{2}, \ldots, p_{m}\right) \in P$ we let $f(p):=p^{\prime}=\left(p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{m}^{\prime}\right)=\left(\sigma_{\pi}\left(p_{1}\right), \sigma_{\pi}\left(p_{2}\right), \ldots, \sigma_{\pi}\left(p_{m}\right)\right)$. Note that since σ_{π} is an automorphism, we are guaranteed that $f(p) \in P$, moreover, f must also be a bijection from P to P.

Now suppose that $p \in R_{x}$, meaning that $p=\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ is the canonical shortest path from $p_{1} \in V$ to $p_{m} \in V$, with $x=p_{l}$ for some $1<l<m$. Considering $f(p)$, we see that $y=p_{l}^{\prime}$ and is thus an internal vertex on that path. Moreover, since σ_{π} has only replaced the symbols in p_{1} and p_{m}, the routing algorithm applied to p_{1}^{\prime} and p_{m}^{\prime} would produce precisely p^{\prime}. This means that p^{\prime} is the canonical shortest path from p_{1}^{\prime} to p_{m}^{\prime} and $p^{\prime} \in R_{y}$. Since f is a bijection from P to P, we have that the restriction of f to R_{x} is an injection from R_{x} to R_{y}, and by a similar argument we can see that the restriction of f^{-1} to R_{y} gives an injection from R_{y} to R_{x}. Thus the restriction of f to R_{x} is a bijection from R_{x} to R_{y}, thus $\left|R_{x}\right|=\left|R_{y}\right|$.

We remark that there are many other definitions for canonical shortest paths that would enable the same proof to work for Theorem 2 In particular, it is only necessary that the shortest path algorithm computes a path from u to v in a way that chooses the path based only on the relative positions of symbols in the k-permutations u and v and not on the actual values or ordering of those symbols.

Corollary 1 For any $n \geq k \geq 2$ we have

$$
\xi\left(S_{n, k}\right)=\frac{1}{n} \sum_{u} \sum_{v \neq u}\left(d_{S_{n, k}}(u, v)-1\right)
$$

We remark that the lower bound given in Theorem 1 is a simple adjustment of the average distance of G. A related concept called the surface area is defined as follows: Given a vertex v and an integer d, the surface area of G with radius r at v is the number of vertices of distance d from v. It now follows from the generating function of the surface area of $S_{n, k}$ [8] that a closed form formula of $\xi\left(S_{n, k}\right)$ can be found. (Although the generating function is complicated, a nicer formula for the average distance can be found.)

Analogous to the vertex-forwarding index, Heydemann et al. 19 have defined the edge-forwarding index of G with respect to a routing R to be the maximum number of paths in R passing through any edge in G. The edgeforwarding index of a graph G, denoted $\pi(G)$, is the minimum edge-forwarding index over all routings R in G. Similar to Theorem 1 , it was shown in 19 that

$$
\frac{1}{|E|} \sum_{u} \sum_{v \neq u} d_{G}(u, v) \leq \pi(G)
$$

This bound holds at equality if and only if G admits a shortest path routing in which every edge has equal load, we call such a routing an edge-uniform shortest path routing. Gauyacq 15 has studied the edge-forwarding index of star graphs and other Cayley graphs, and it is known that some, but not all, Cayley graphs admit edge-uniform shortest path routings. In the following remark we note that the (n, k)-star graph need not have edge-uniform shortest path routings.

Remark 1 Using a computer check we have computed that if $G=S_{4,2}$ we have:

$$
\frac{1}{|E(G)|} \sum_{u} \sum_{v \neq u} d_{G}(u, v)=15 \text { and } \pi(G)=18
$$

In the above remark, the value of $\pi\left(S_{4,2}\right)$ was calculated by solving an integer programming formulation of a multi-commodity flow model where feasible solutions encoded routings and the objective function minimized the maximum edge load of the routing. Although we have not further pursued this question, we would conjecture that most (n, k)-star graphs do not admit edge-uniform shortest path routings.

2.2 The structure of $S_{n, 2}$ and $S_{n, 3}$

The following lemmas provide an alternative definition of $S_{n, 2}$ and $S_{n, 3}$ in terms of their structure. These representations provide a convenient way to identify them later on.

Lemma 1 Let $G=(V, E)$ be an $(n-1)$-regular graph with $n(n-1)$ vertices. Suppose that V can be partitioned into n sets of size $n-1$, labeled H_{1}, \ldots, H_{n}, such that the subgraph of G induced by the vertices in H_{i} is complete, moreover, for any distinct i, j, there is exactly one pair of vertices u, v such that u in H_{i}, v in H_{j} and $(u, v) \in E$, then G is isomorphic to $S_{n, 2}$.

Proof Suppose that G satisfies the above conditions. We will show how to label each vertex of G with a 2-permutation, giving the isomorphism between G and $S_{n, 2}$. Consider a vertex v belonging to a partite set H_{j}. Since v has degree ($n-1$), it must have exactly $n-2$ neighbors in H_{j} and a single outgoing edge whose other end is in another partite set H_{i} with $i \neq j$. For each v we assign it the label $[i, j]$ according to these two partite sets. Note that of the $n(n-1)$ possible 2-permutations on $1, \ldots, n$, each appears exactly once since we have assumed that there is a unique edge between any two of the partite sets.

Finally, we will show that for any pair of nodes u, v, there is an edge between them in G if and only if their corresponding labels correspond to nodes connected in $S_{n, 2}$. Edges in $S_{n, 2}$ may come in only two forms. First, we have an edge between $[i, j]$ and $[k, j]$ for $i \neq k$, and the nodes in G with these labels must also be connected as they both appear in the same partite set H_{j}, which induces a complete subgraph. The second type of edge in $S_{n, 2}$ will be between nodes with labels $[i, j]$ and $[j, i]$ for some $i \neq j$. By the definition of the labeling, this edge also appears in G and corresponds to the unique edge between partite sets H_{i} and H_{j}. Since all edges in G fall into one of these two categories, the edges in G are in direct correspondence with the edges of $S_{n, 2}$ and the graphs are isomorphic.

Given a graph G, an edge in G is called a star-like edge if it is not in a 3 -cycle, otherwise it is called a residual-like edge. A 6-cycle is called a star-like

6 -cycle if it contains solely star-like edges. This definition is motivated by the fact that in $S_{n, 3}(n \geq 5)$ a star-like edge is a star edge, and a residual-like edge is a residual edge.

Lemma 2 Let $n \geq 5$ and $G=(V, E)$ be an $(n-1)$-regular graph with $n(n-$ 1) $(n-2)$ vertices. Suppose that
(i) V can be partitioned into n sets of size $(n-1)(n-2)$, labeled H_{1}, \ldots, H_{n}, such that the subgraph of G induced by the vertices in H_{i} is isomorphic to $S_{n-1,2}$ for each i;
(ii) for any ordered triple $\left(H_{i}, H_{j}, H_{k}\right)$ with distinct i, j, k, there is a unique 6 -tuple of vertices $\left(v_{k j i}, v_{j k i}, v_{i k j}, v_{k i j}, v_{j i k}, v_{i j k}\right)$ with the first two vertices in H_{i}, the middle two in H_{j}, the last two in H_{k}, and these six vertices form a star-like 6-cycle in that order;
(iii) for any distinct $1 \leq i, j, k, \ell \leq n$, vertices $v_{k j i}$ and $v_{\ell j i}$ are joined by a residual-like edge.

Then G is isomorphic to $S_{n, 3}$.
Proof First we check that $S_{n, 3}$ satisfies the above conditions. Let H_{i} be the set of vertices of the form $[j, k, i]$ with i fixed. Then we can relabel this vertex in H_{i} by $[j, k]$ for each $j, k \in\{1, \ldots, n\} \backslash\{i\}$. In this relabeling the vertices $[j, k]$ and $\left[j^{\prime}, k\right]$ are adjacent whenever $j \neq j^{\prime}$, and $[j, k]$ and $[k, j]$ are also adjacent whenever $j \neq k$. Thus H_{i} is isomorphic to $S_{n-1,2}$. Moreover, to show the existence of the 6-tuple, choose $v_{a b c}=[a, b, c]$ whenever a, b, c are distinct. The uniqueness of the 6 -tuple is easy to see. It is also clear that this 6 -cycle is star-like. Moreover it is easy to see that condition (iii) is satisfied.

Now assume that G satisfies the given conditions. Since each H_{i} is isomorphic to $S_{n-1,2}$, each vertex is incident to at least $n-3$ residual-like edges within the H_{i} containing it. Graph G is $(n-1)$-regular, so each vertex has two more incident edges, one within the H_{i}, one going outside. Thus each vertex can be part of at most one star-like 6-cycle, so by property (ii), each has to be part of exactly one. So the other two edges incident to each vertex must be star-like edges, and the labellings in (ii) assign a unique label to each vertex. Label vertex $v_{i j k}$ with $[i, j, k]$ for every distinct i, j, k. In this labeling, vertex $[k, j, i]$ is adjacent to $[j, k, i]$ and $[i, j, k]$, as well as to $[\ell, j, i]$ for every $\ell \neq i, j, k$ by (iii). So this labeling gives an isomorphism between G and $S_{n, 3}$.

3 Cayley Classification

As a first step in determining which of $S_{n, k}$ are Cayley graphs, we consulted catalogs of Cayley graphs of small size such as http://staffhome.ecm.uwa.edu.au/~00013890/remote/cayley/index.html. This page lists all Cayley graphs with up to 31 vertices, organized by their groups. Although $S_{n, k}$ only falls within this size for some very small values of n and k, we note that this catalog provided helpful insight. In particular, it confirmed that $S_{6,2}$ is not Cayley and that $S_{5,2}$ is Cayley and generated from the group $\operatorname{Hol}\left(C_{5}\right)$.
3.1 Cayley (n, k)-star graphs

It is well known that $S_{n, n-1}$ is isomorphic to the star graph S_{n} (see 11]); an isomorphism from S_{n} to $S_{n, n-1}$ can be constructed by mapping each permutation to the $(n-1)$-permutation formed by truncating the last symbol. The first proposition here follows directly from the fact that $S_{n, n-1}$ is isomorphic to the star graph S_{n}, which is a Cayley graph for all values of n.

Proposition $1 S_{n, n-1}$ is a Cayley graph for all $n \geq 2$.
An obvious next step is to see whether $S_{n, n-2}$ is Cayley. Indeed, it is known that such a graph is Cayley. We will simply attribute this as a folklore result. As an interesting side note, recently researchers introduced a "new" class of interconnection networks called the alternating group networks 23, and 40] gave a proof that these networks are Cayley. However, 9 showed that these graphs are isomorphic to $S_{n, n-2}$. For completeness, we will include a proof here. Here we use the alternating group A_{n}, the subgroup of the symmetric group made up of the even permutations.

Proposition $2 S_{n, n-2}$ is a Cayley graph for $n \geq 3$.

Proof Consider the Cayley graph $G=\Gamma\left(A_{n}, S\right)$ where the set of generators S is taken to be $S=\{(1,2)(n-1, n),(1,3)(n-1, n) \ldots,(1, n-2)(n-1, n),(1, n-$ $1, n),(1, n, n-1)\}$. These generators have two types. The first type will swap the first symbol with any of the symbols in positions 2 up to $n-2$ and also swap the symbols in positions $n-1$ and n. The second type are the three cycles that rotate the first symbol with the symbols in position $n-1$ and n.

We now construct an isomorphism f from G to $S_{n, n-2}$. Let $p=\left[p_{1}, p_{2}, \ldots, p_{n}\right]$ be a permutation in A_{n}, we map p to the $(n-2)$-permutation on n elements by $f(p)=\left[p_{1}, p_{2}, \ldots, p_{n-2}\right]$. Note that f is a bijection from A_{n} to the $(n-2)$ permutations since an ($n-2$)-permutation can be extended to an even permutation on n elements in a unique way (there are only two choices for how to append the remaining symbols; one results in an even permutation, and the other one results in an odd permutation). Moreover, to see that f gives an isomorphism, we observe that the generators in S correspond to precisely the edges in $S_{n, n-2}$, that is, the edges corresponding to swapping the first symbol in the ($n-2$)-permutation with any of the other symbols present in another position, or exchanging it with one of the symbols not appearing.

One conceivable approach for showing that some additional (n, k)-star graphs are Cayley graphs would be to generate Cayley graphs of various subgroups of the symmetric group and then map the vertices of these Cayley graphs to the vertices of $S_{n, k}$ by truncating the permutations to be k permutations. Although this has worked in the above two cases, we did not find an obvious way of how this approach can be carried out in other cases.
$3.2 S_{p^{m}, 2}$ is Cayley
Let $q=p^{m}$. Given a finite field F_{q} having q elements, it is well-known 18 , Theorem 5.3] that the multiplicative group F_{q}^{*} of nonzero elements is cyclic, thus if we let σ be a generator of F_{q}^{*}, then

$$
F_{q}^{*}=\langle\sigma\rangle=\left\{1, \sigma, \ldots, \sigma^{q-2}\right\} \cong C_{q-1}
$$

Define the semidirect product

$$
\begin{equation*}
F_{q} \rtimes F_{q}^{*}=\left\{(a, b) \mid a \in F_{q}, b \in F_{q}^{*}\right\} \tag{1}
\end{equation*}
$$

where the group operation is given by $(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a+b a^{\prime}, b b^{\prime}\right)$. Note that $F_{q} \rtimes F_{q}^{*}$ has $q(q-1)$ elements. Introduce notation for the following elements in $F_{q} \rtimes F_{q}^{*}$:

$$
1=(0,1), \quad t=(0, \sigma), \quad s=(1,-1)
$$

We also give an equivalent definition. Recall that the general linear group and the projective general linear group are defined as follows:

$$
\begin{gathered}
\mathrm{GL}(2, q):=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2}\left(F_{q}\right) \right\rvert\, a d-b c \neq 0\right\}, \\
\operatorname{PGL}(2, q):=\mathrm{GL}(2, q) /\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right] \in M_{2}\left(F_{q}\right) \right\rvert\, a \neq 0\right\} .
\end{gathered}
$$

Then $F_{q} \rtimes F_{q}^{*}$ can be viewed as a subgroup of $\operatorname{GL}(2, q)$ and $\operatorname{PGL}(2, q)$:

$$
F_{q} \rtimes F_{q}^{*} \cong\left\{\left[\begin{array}{ll}
b & a \tag{2}\\
0 & 1
\end{array}\right] \in \mathrm{GL}(2, q)\right\} \cong\left\{\left[\begin{array}{ll}
b & a \\
0 & 1
\end{array}\right] \in \operatorname{PGL}(2, q)\right\}
$$

where the isomorphism is given by

$$
(a, b) \mapsto\left[\begin{array}{ll}
b & a \\
0 & 1
\end{array}\right]
$$

Lemma 3 The elements of G listed below are all distinct:

$$
\begin{equation*}
F_{q} \rtimes F_{q}^{*}=\left\{1, t, \ldots, t^{q-2}\right\} \cup\left\{t^{i} s t^{j} \mid 0 \leq i, j \leq q-2\right\} . \tag{3}
\end{equation*}
$$

Moreover, $s^{2}=1$, and for each $i \not \equiv 0(\bmod q-1)$, there exist unique $j, k \not \equiv 0$ $(\bmod q-1)$ such that

$$
\begin{equation*}
s t^{i} s t^{j} s t^{k}=1 \tag{4}
\end{equation*}
$$

As a consequence, $F_{q} \rtimes F_{q}^{*}$ is generated by s and t.

Proof We first note that $s \neq 1$ and $s^{2}=1$, so s has order 2 .
Next we show that all the $q(q-1)$ elements listed in (3) are distinct, then because $F_{q} \rtimes F_{q}^{*}$ has exactly $q(q-1)$ elements according to (1), we conclude that (3) lists all elements. Indeed, since the order of t is $q-1$, the powers $1, t, \ldots, t^{q-2}$ are distinct from each other. Next, an element of form t^{k} is distinct from an element of from $t^{i} s t^{j}$. Otherwise assume $t^{k}=t^{i} s t^{j}$, then $(1,-1)=s=$ $t^{k-i-j}=\left(0, \sigma^{k-i-j}\right)$, which is absurd. Furthermore, elements of the form $t^{i} s t^{j}$ are distinct from each other. To see this, assume $t^{i} s t^{j}=t^{k} s t^{\ell}$ with $0 \leq i, j, k, \ell \leq q-2$. Then $t^{i-k} s=s t^{\ell-j}$, hence $\left(\sigma^{i-k},-\sigma^{i-k}\right)=\left(1,-\sigma^{\ell-j}\right)$, hence $i=k$ and $j=\ell$. This completes the proof that all elements listed in (3) are distinct.

In the last statement of the lemma we rewrite (4) as $s t^{-i} s=t^{j} s t^{k}$. Then the existence and uniqueness of j and k follows from (3) once we show that $j, k \not \equiv 0(\bmod q-1)$. Indeed, if $j \equiv 0$, then $s t^{-i} s=s t^{k}$, hence $t^{-i} s=t^{k}$, which is impossible because of (3); similarly $k \equiv 0$ is impossible.

Proposition 3 Let p be a prime number, m be a positive integer. Then $S_{p^{m}, 2}$ is a Cayley graph.

Proof Let $q=p^{m}, G=F_{q} \rtimes F_{q}^{*}, S=\left\{t, t^{2}, \ldots, t^{q-2}, s\right\}$. It follows from Lemma 3 that S generates G and $S=S^{-1}$. We claim that

$$
\Gamma(G, S) \cong S_{q, 2}
$$

Let T be the subgroup $\langle t\rangle=\left\{1, t, t^{2}, \ldots, t^{q-2}\right\}$ of G. Then $\Gamma(G, S)$ has complete subgraphs $H_{1}=T, H_{2}=s T, H_{3}=t s T, H_{4}=t^{2} s T, \ldots, H_{q}=t^{q-2} s T$; all isomorphic to the complete graph K_{q-1}. Thanks to Lemma 2.3, it suffices to prove that for any distinct $i, j(1 \leq i<j \leq q)$, there is exactly one pair of elements $u \in H_{i}, v \in H_{j}$ such that (u, v) is an edge in $\Gamma(G, S)$. We prove this by considering two cases:

Case 1: $i=1$. Denote $u=t^{a}, v=t^{j-2} s t^{b}$ where $2 \leq j \leq q$. Then (u, v) is an edge if and only if $v=u s$ or $v=u t^{c}$ for some $1 \leq c \leq q-2$. Using Lemma 3 the second equation, which is $t^{j-2} s t^{b}=t^{a+c}$, never holds; and the first equation, which is $t^{j-2} s t^{b}=t^{a} s$, holds if and only if $a=j-2$ and $b=0$. Thus there is exactly one edge between H_{1} and H_{j}.

Case 2: $i \geq 2$. We need to show that there exists a unique pair $a, b(0 \leq$ $a, b \leq q-2)$ such that $u=t^{i} s t^{a}$ and $v=t^{j} s t^{b}$ are joined by an edge, that is, $v=u s$ or $v=u t^{c}$ for some $1 \leq c \leq q-2$. Using Lemma 3 and that $i<j$, the second equation never holds. The first equation is equivalent to

$$
t^{i} s t^{a} s=t^{j} s t^{b}
$$

which is equivalent to

$$
s t^{j-i} s t^{b} s t^{-a}=1
$$

This equation has a unique solution of (a, b) by Lemma 3, finishing the proof.
3.3 Non-Cayley $S_{n, 2}$

Lemma 4 If $\Gamma(G, S) \cong S_{n, 2}$, where $n \geq 4$, then

$$
S=(T \backslash\{1\}) \cup\{s\},
$$

where T is a subgroup of G of order $n-1$, and s is an order 2 element.
Moreover, $V(G)=T \cup T s T=T \cup\left\{t s t^{\prime} \mid t, t^{\prime} \in T\right\}$, and this is a disjoint union.

Proof The graph $S_{n, 2}$ has the property that each vertex is incident to exactly one edge that is not in a 3 -cycle. Assume that vertex 1 is joined to vertex s by such an edge e. Consider the automorphism $f: g \mapsto g s$ of $S_{n, 2}$. It must send the edge e to an edge incident to s that is not in a 3-cycle, which has to be e. Thus $f(s)=1$, in other words, $s^{2}=1$. Since we assume $1 \notin S, s$ is of order 2 .

Now consider the complete subgraph $K \cong K_{n-1}$ of $S_{n, 2}$ that contains 1. None of the edges between K and $S_{n, 2}-K$ are in 3-cycles, so they all correspond to s. All edges inside K correspond to $S \backslash\{s\}$, thus $T:=(S \backslash$ $\{s\}) \cup\{1\}$ is closed under multiplication, therefore must be a subgroup of G.

Next, note that the n left cosets of T correspond to the n complete subgraphs of $S_{n, 2}$ isomorphic to K_{n-1}. By the property of $S_{n, 2}$, any two cosets of T are joined by an edge, which must correspond to s because it is not in a 3-cycle. Therefore, for an arbitrary element $x=a t_{2} \in a T$ such that $a \in V(G), t_{2} \in T$, and $x \notin T$, there exists an edge between $a T$ and T, so there is an element $a t_{1} \in a T$ and $t \in T$ such that $a t_{1}=t s$. Then $x=a t_{2}=\left(t s t_{1}^{-1}\right) t_{2}=t s t^{\prime} \in T s T$ where $t^{\prime}=t_{1}^{-1} t_{2}$. This shows $V(G)=T \cup T s T$.

Finally, note that $|T|=n-1$ and $|T s T| \leq(n-1)^{2}$, thus

$$
n(n-1)=\left|S_{n, 2}\right|=|G| \leq|T|+|T s T| \leq(n-1)+(n-1)^{2}=n(n-1) .
$$

So both inequalities must be equalities. This implies that all elements in T and $\left\{t s t^{\prime} \mid t, t^{\prime} \in T\right\}$ are distinct from each other.

Proposition 4 If $S_{n, 2} \cong \Gamma(G, S)$, where $n \geq 4$ (using the notation in Lemma 4), then the following hold:
(i) If $g \in G \backslash T$, then the $(n-1)$ conjugate elements tgt ${ }^{-1}$ for $t \in T$ are all distinct and not in T.
(ii) If $g \in G \backslash T$, then $T \cap g T g^{-1}=\{1\}$. In particular, T is not normal.
(iii) There are n distinct conjugate subgroups of T in G, namely T and $t s T s t^{-1}$ for each $t \in T$. The intersection of any two distinct conjugate subgroups contains only the identity.
(iv) n is a prime power.

Proof (i) Assume $t \neq t^{\prime}$ are two elements in T such that $t g t^{-1}=t^{\prime} g t^{\prime-1}$. By Lemma 4, there exist $t_{1}, t_{2} \in T$ such that $g=t_{1} s t_{2}$. Then

$$
t t_{1} s t_{2} t^{-1}=t^{\prime} t_{1} s t_{2} t^{\prime-1}
$$

Again by Lemma $4 t t_{1}=t^{\prime} t_{1}, t_{2} t^{-1}=t_{2} t^{\prime-1}$. This contradicts the assumption $t \neq t^{\prime}$.

Furthermore, if $t g t^{-1} \in T$, then $g \in t^{-1} T t=T$, contradicting to the assumption.
(ii) Assume $t \in T \cap g T g^{-1}$. By Lemma 4, there exist $t_{1}, t_{2} \in T$ such that $g=t_{1} s t_{2}$. So $t \in g T g^{-1}$ implies that there exists $t^{\prime} \in T$, such that

$$
t=\left(t_{1} s t_{2}\right) t^{\prime}\left(t_{1} s t_{2}\right)^{-1}
$$

Then

$$
t t_{1} s t_{2}=t_{1} s t_{2} t^{\prime}
$$

implying $t t_{1}=t_{1}, t_{2}=t_{2} t^{\prime}$, thus $t=1$.
(iii) If $g \in T$, then $g T g^{-1}=T$. If $g \notin T$, write $g=t s t^{\prime}$ with $t, t^{\prime} \in T$. Then

$$
g T g^{-1}=t s t^{\prime} T t^{\prime-1} s t^{-1}=t s T s t^{-1} .
$$

So all conjugacy subgroups of T are listed as in (iii).
Next we show that these n conjugate subgroups are distinct. It follows from (ii) that T is distinct from the rest. If two conjugate subgroups coincide, so $t_{1} s T s t_{1}^{-1}=t_{2} s T s t_{2}^{-1}$, then

$$
T=\left(s t_{1}^{-1} t_{2} s\right) T\left(s t_{1}^{-1} t_{2} s\right)^{-1}
$$

By (ii), $s t_{1}^{-1} t_{2} s=1$, thus $t_{1}=t_{2}$.
Now we show that the intersection of any two distinct conjugate subgroups contains only the identity. If one of these two subgroups is T, this follows from (ii). Now assume

$$
t \in t_{1} s T s t_{1}^{-1} \cap t_{2} s T s t_{2}^{-1}
$$

where $t_{1}, t_{2} \in T, t_{1} \neq 1$, and $t_{1} \neq t_{2}$. Then

$$
s t_{1}^{-1} t t_{1} s \in T \cap s t_{1}^{-1} t_{2} s T s t_{2}^{-1} t_{1} s=\{1\} .
$$

So $s t_{1}^{-1} t t_{1} s=1$, implying $t=1$.
(iv) Assume the contrary and let p, q be two distinct prime factors of n. Let m_{p} and m_{q} be the numbers of order p and order q elements in G, respectively. By Cauchy's Theorem there is an element $g \in G$ of order p. By (i), its $n-1$ conjugates $\operatorname{tgt}^{-1}(t \in T)$ are all distinct and not in T. All these conjugates have order p. So $m_{p} \geq n-1$. Similarly $m_{q} \geq n-1$.

Meanwhile, it follows from (iii) that

$$
\left|T \cup \bigcup_{t \in T} t s T s t^{-1}\right|=n(n-2)+1=n^{2}-2 n+1
$$

Since all the conjugates of T have order $n-1$ and $p, q \nmid n-1$, there are no elements among the conjugates of T that have order p or q. So we have at least $\left(n^{2}-2 n+1\right)+m_{p}+m_{q}$ distinct elements in G, which leads to a contradiction since
$\left(n^{2}-2 n+1\right)+m_{p}+m_{q} \geq\left(n^{2}-2 n+1\right)+(n-1)+(n-1)>n(n-1)=|G|$.

Now combine Proposition 3 with Proposition 4 (and the fact that $S_{3,2}$ is a Cayley graph), we have
Theorem 3 The graph $S_{n, 2}$ is a Cayley graph if and only if n is a prime power.

$3.4 S_{p^{m}+1,3}$ is Cayley

Lemma 5 Let p be an odd prime and σ be a primitive root of p. We have the following group isomorphism:

$$
F_{p} \rtimes F_{p}^{*} \cong\left\langle a, x \mid a^{p-1}=x^{p}=1, a x=x^{\sigma} a\right\rangle .
$$

Proof Denote the right hand side by H. Elements in the right hand side are of the form $x^{i} a^{j}$, where $0 \leq i \leq p-1,0 \leq j \leq p-2$, so $|H| \leq p(p-1)$. Consider the homomorphism

$$
\psi: H \mapsto F_{p} \rtimes F_{p}^{*}
$$

determined by $\psi(a)=t=(0, \sigma), \psi(x)=s t^{\frac{p-1}{2}}=(1,1)$. It is easy to check that

$$
\psi(a)^{p-1}=\psi(x)^{p}=(0,1)=1_{F_{p} \rtimes F_{p}^{*}}, \quad \psi(a) \psi(x)=(\sigma, \sigma)=\psi(x)^{\sigma} \psi(a) .
$$

Thus ψ is well-defined. Since $\psi(a)=t, \psi\left(x a^{-q}\right)=s$, and the group $F_{p} \rtimes F_{p}^{*}$ is generated by t and s, we conclude that ψ is surjective. Since $|H| \leq p(p-1)=$ $\left|F_{p} \rtimes F_{p}^{*}\right|$, we conclude that ψ is an isomorphism.

Lemma 6 Let $n \geq 5$, and assume that G is a group of order $n(n-1)(n-2)$ generated by a subgroup T of order $n-2$ together with two elements b and c of order 2. Let $H=\langle T, b\rangle$. Assume that $\Gamma(H,(T \backslash\{1\}) \cup\{b\}) \cong S_{n-1,2}$, $(b c)^{3}=1$, and

$$
H \cap(b c) H(b c)^{-1} \subseteq T, \quad T \cap(b c) T(b c)^{-1}=\{1\}
$$

Then $\Gamma(G,(T \backslash\{1\}) \cup\{b, c\}) \cong S_{n, 3}$.
Proof We shall prove that $\Gamma(G, S) \cong S_{n, 3}$ for $S=(T \backslash\{1\}) \cup\{b, c\}$ by verifying the three conditions in Lemma 2 ,

For (i) Let $H_{1}(=H), H_{2}, \ldots, H_{n}$ be the left cosets of H in G. Then by assumption, all the induced subgraphs are isomorphic to $S_{n-1,2}$.
(ii) It is easy to check that $b, b c, b c b, b c b c, b c b c b, b c b c b c(=1)$ are distinct from each other (they actually form the group S_{3}). So at every vertex v of G there is a star-like 6 -cycle passing through it, namely ($v, v b, v b c, v b c b, v b c b c, v b c b c b$). Since each vertex of G is incident to two star-like edges, all the star-like 6-cycles are disjoint.

We claim that there is at most one star-like 6 -cycle satisfying the condition in (ii). Indeed, if ($v, v b, \ldots, v b c b c b)$ and $\left(v^{\prime}, v^{\prime} b, \ldots, v^{\prime} b c b c b\right)$ are such star-like 6 -cycles, then $v^{\prime} \in v H, v^{\prime} b c \in v b c H, v^{\prime} b c b c \in v b c b c H$. Thus

$$
v^{-1} v^{\prime} \in H \cap(b c) H(b c)^{-1} \cap(b c)^{2} H(b c)^{-2} \subseteq T \cap(b c) T(b c)^{-1}=\{1\}
$$

so $v=v^{\prime}$.
The claim implies that for every unordered pair (j, k) (so that i, j, k are distinct) there is at most one star-like 6-cycle contained in $H_{i} \cup H_{j} \cup H_{k}$. Since there are $\binom{n-1}{2}$ such unordered pairs, there are at most $\binom{n-1}{2}$ star-like 6 -cycles intersecting with H_{i}. On the other hand, there are $\frac{\left|H_{i}\right|}{2}=\binom{n-1}{2}$ star-like edges in H_{i}, and each vertex in H_{i} is incident to exactly one such edge, so there should be exactly $\binom{n-1}{2}$ star-like 6 -cycles intersecting with H_{i}. Therefore for every unordered pair (j, k) (so that i, j, k are distinct) there is exactly one star-like 6 -cycle contained in $H_{i} \cup H_{j} \cup H_{k}$. This implies (ii).
(iii) Since $v_{k j i}, v_{\ell j i} \in H_{i}$, and $v_{k j i} b c, v_{\ell j i} b c \in H_{j}$, we get

$$
v_{k j i}^{-1} v_{\ell j i} \in H \cap(b c) H(b c)^{-1} \subseteq T
$$

So $v_{k j i}$ and $v_{\ell j i}$ are joined by a residual-like edge.
Proposition 5 If p is a prime number and m is a positive integer, then $S_{p^{m}+1,3}$ is a Cayley graph.

Proof We prove the statement by verifying the conditions in Lemma 6
Let $n=p^{m}+1, q=p^{m}, G=\operatorname{PGL}(2, q), S=\left\{A^{i} \mid i=1, \ldots, q-1\right\} \cup\{B, C\}$ where

$$
A=\left[\begin{array}{ll}
\sigma & 0 \\
0 & 1
\end{array}\right], B=\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right], C=\left[\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right]
$$

First, $|G|=n(n-1)(n-2)$. Indeed, it is well known that $|\mathrm{GL}(2, q)|=$ $\left(q^{2}-1\right)\left(q^{2}-q\right)$, so $|G|=\left(q^{2}-1\right)\left(q^{2}-q\right) /(q-1)=(q+1) q(q-1)=n(n-1)(n-2)$.

Then we show that A, B, C generate G. Indeed, the cyclic group

$$
T=\langle A\rangle=\left\{\left.\left[\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right] \right\rvert\, a \neq 0\right\}=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] \in \operatorname{PGL}(2, q)\right\}
$$

has order $(n-2)$ and contains all diagonal matrices in G. Then A and B generate $B\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, which generates all matrices $\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$ for $a \in F_{q}$. So A and B generate all the upper triangular matrices. Then note that $B C B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$, so all the elementary matrices can be generated by A, B, C. Using elementary matrices and upper triangular matrices we can generate G.

It is straightforward to check that B and C have order 2 , and $(B C)^{3}=$ $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

It follows from (2) and Proposition 3 that

$$
H=\langle T, B\rangle=\langle A, B\rangle=\left\{\left[\begin{array}{ll}
b & a \\
0 & 1
\end{array}\right] \in \operatorname{PGL}(2, q)\right\} \cong F_{q} \rtimes F_{q}^{*}
$$

and $\Gamma(H, S \backslash\{C\}) \cong S_{q, 2}$.

Next we verify $H \cap(B C) H(B C)^{-1} \subseteq T$. For any

$$
D=\left[\begin{array}{ll}
b & a \\
0 & 1
\end{array}\right] \in H \cap(B C) H(B C)^{-1}
$$

we have

$$
(B C)^{-1} D(B C)=\left[\begin{array}{cc}
-a+1 & a+b-1 \\
-a & a+b
\end{array}\right] \in H
$$

implying that $a=0$. Thus $D \in T$.
Finally we check $T \cap(B C) T(B C)^{-1}=\{1\}$. In the above assume further that $D \in T \cap(B C) T(B C)^{-1}$. Then $a=0$ and $b=1$. So $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.

4 Conclusions

We have studied the question of which (n, k)-star graphs are Cayley. The conclusion that they are sometimes but not always Cayley could be seen as surprising since most of the other widely studied interconnection networks are Cayley graphs. The results in this paper also provide new insight into the structure of (n, k)-star graphs.

It would be desirable to ultimately find a complete classification. Although this may prove to be a very difficult problem, there are some next steps that might be tractable. First, we conjecture that the condition given in Proposition 5 is both necessary and sufficient, giving the following.

Conjecture $1 S_{n, 3}$ is Cayley if and only if $n-1$ is a prime power.
Additionally, we believe that the methods applied in this paper may lead to insight into the structure of $S_{n, k}$ for other small values of k.

Our results also lead us to make another conjecture.
Conjecture 2 If $S_{n, k}$ is Cayley and $k \geq 2$, then $S_{n-1, k-1}$ is Cayley.
There are two reasons why we believe this might be the case. First, our results in Proposition 5 and Theorem 3, and all other results in the paper match up in a way consistent with this conjecture. Second, as $S_{n, k}$ contains many subgraphs of $S_{n-1, k-1}$, we think it is possible that non-Cayley subgraphs of $S_{n-1, k-1}$ may indicate structural properties that could also prevent $S_{n, k}$ from being Cayley. We remark that the converse of Conjecture 2 is not true as $S_{5,1}$ is Cayley but $S_{6,2}$ is not Cayley. Nevertheless it may still be true for certain values of k.

As a final note, we observe that since the (n, k)-star graphs are well studied and have been shown to have a wide variety of nice structural properties, they could be used as counterexamples to conjectures about sufficient conditions for graphs being Cayley.

References

1. T. Araki, Hyper Hamiltonian laceability of Cayley graphs generated by transpositions, Networks 48 (2006) 121-124.
2. E. Cheng, J. Grossman, K. Qiu, and Z. Shen, Distance formula and shortest paths of the (n, k)-star graphs, Information Sciences 180 (2010) 1671-1680.
3. E. Cheng and M.J. Lipman, Vulnerability issues of star graphs, alternating group graphs and split-stars: strength and toughness, Discrete Applied Mathematics 118 (2002) 163179.
4. E. Cheng and M.J. Lipman, Increasing the connectivity of the star graphs, Networks 40 (2002) 165-169.
5. E. Cheng, L. Lipták, and N. Shawash, Orienting Cayley graphs generated by transposition trees, Computers and Mathematics with Applications 55 (2008) 2662-2672.
6. E. Cheng, L. Lipták, and D. E. Steffy, Strong local diagnosability of (n, k)-star graphs and Cayley graphs generated by 2-trees with missing edges, Information Processing Letters 113 (2013) 452-456.
7. E. Cheng, K. Qiu, and Z. Shen, A short note on the surface area of star graphs, Parallel Processing Letters 19 (2009) 19-22.
8. E. Cheng, K. Qiu, and Z. Shen, A generating function approach to the surface area of some interconnection networks, Journal of Interconnection Networks 10 (2009) 189204.
9. E. Cheng, K. Qiu, and Z. Shen, A note on the alternating group network, Journal of Supercomputing 59 (2012) 246-248.
10. E. Cheng, K. Qiu, and Z. Shen, The number of shortest paths in the $(n, k)-$ star graphs, Discrete Mathematics, Algorithms and Applications (2014) DOI: 10.1142/S1793830914500517, 1450051
11. W.-K. Chiang and R.-J. Chen, The (n, k)-star graph: A generalized star graph, Information Processing Letters 56 (1995) 259-264.
12. F. R. K. Chung, E. G. Jr. Coffman, M. I. Reiman, and B. Simon, The forwarding index of communication networks, IEEE Transactions on Information Theory $\mathbf{3 3}$ (1987) 224232.
13. D.-R. Duh, T.-L. Chen, and Y.-L. Wang, $(n-3)$-edge-fault-tolerant weak-pancyclicity of (n, k)-star graphs, Theoretical Computer Science 516 (2014) 28-39.
14. L. Gargano, U. Vaccaro, and A. Vozella, Fault tolerant routing in the star and pancake interconnection networks, Information Processing Letters 45 (1993) 315-320.
15. G. Gauyacq, Edge-forwarding index of star graphs and other Cayley graphs., Discrete Applied Mathematics, 80 (1997) 149-160.
16. Q. Gu and S. Peng, An efficient algorithm for k-pairwise disjoint paths in star graphs, Information Processing Letters 67 (1998) 283-287.
17. Q. Gu and S. Peng, Cluster fault tolerant routing in star graphs, Networks 35 (2000) 83-90.
18. T. Hungerford, Algebra, Graduate Texts in Mathematics, 73. Springer-Verlag, New York-Berlin, 1980.
19. M.-C. Heydemann, J.-C. Meyer, and D. Sotteau, On the-forwarding index of networks, Discrete Applied Mathematics 23 (1989) 103-123.
20. D.A. Hoelzeman and S. Bettayeb, On the genus of the star graphs, IEEE Transactions on Computers 43 (1994) 755-759.
21. H.-C. Hsu, Y.-L. Hsieh, J.J.M. Tan, and L.H. Hsu, Fault Hamiltonicity and fault Hamiltonian connectivity of the (n, k)-star graphs, Networks 42 (2003) 189-201.
22. J. Irving and A. Ratton, Minimal factorizations of permutations into star transpositions, Discrete Mathematics 309 (2009) 1549-1554.
23. Y. Ji, A new class of Cayley networks based on the alternating groups, Appl. Math. A, J. Chin. Univ. 14 (1999) 235-239.
24. V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing: Design and Analysis of Algorithms. Benjamin/Cummings, 1994.
25. S. Latifi, A study of fault tolerance in star graph, Information Processing Letters 102 (2007) 196-200.
26. T.-K. Li, J. J.M. Tan, and L.-H. Hsu, Hyper hamiltonian laceability on edge fault star graph, Information Sciences 165 (2004) 59-71.
27. V.E. Mendia and D. Sarkar, Optimal broadcasting on the star graphs, IEEE Transactions on Parallel and Distributed Systems 3 (1992) 389-396.
28. G. Sabidussi, On a Class of Fixed-Point-Free Graphs, Proceedings of the American Mathematical Society 5 (1958) 800-804.
29. J.P. Sheu, C.Y. Wu, and T.S. Chen, An optimal broadcasting algorithm without message redundancy in star graphs, Transactions on Parallel and Distributed Systems 6 (1995) 653-658.
30. X. Shen, Q. Hu, B. Cong, H. Sudborough, M. Girou, and S. Bettayeb, The 4-star graph is not a subgraph of any hypercube, Information Processing Letters 37 (1993) 199-203.
31. Z. Shen, K. Qiu, and E. Cheng, On the surface area of the (n, k)-star graph, Theoretical Computer Science 410 (2009) 5481-5490.
32. S. Shim, J. Siran and J. Zerovnik, Counterexamples to the uniform shortest path routing conjecture for vertex-transitive graphs, Discrete Applied Mathematics 119 (2002) 281286.
33. Y. Tanaka, Y. Kikuchi, T. Araki, and Y. Shibata, Bipancyclic properties of Cayley graphs generated by transpositions, Discrete Mathematics 310 (2010) 748-754.
34. Y.C. Tseng, Y.S. Chen, T.Y. Juang, and C.J. Chang, Congestion-free, dilation-2 embedding of complex binary trees into star graphs, Networks 33 (1999) 221-231.
35. Y.C. Tseng and J.P. Sheu, Toward optimal broadcast in a star graph using multiple spanning tree, IEEE Transactions on Computers 46 (1997) 593-599.
36. Y. Wei and F. Chen, Generalized connectivity of (n, k)-star graphs, International Journal of Foundations of Computer Science 24 (2013) 1235-1241.
37. Y. Xiang and I.A. Stewart, One-to-many node-disjoint paths in (n, k)-star graphs, Discrete Applied Mathematics 158 (2010) 62-70.
38. C.H. Yeh and B. Parhami, VLSI layouts of complete graphs and star graphs, Information Processing Letters 68 (1998) 39-45.
39. A. Yuan, E. Cheng, and L. Lipták, Linearly many faults in (n, k)-star graphs, International Journal of Foundations of Computer Science 22 (2011) 1729-1745.
40. S.M. Zhou, W.J. Xiao, and B. Parhami, Construction of vertex-disjoint paths in alternating group networks, Journal of Supercomputing 54 (2010) 206-228.
