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Abstract In this paper we work to classify which of the (n, k)-star graphs,
denoted by Sn,k, are Cayley graphs. Although the complete classification is left
open, we derive infinite and non-trivial classes of both Cayley and non-Cayley
graphs. We give a complete classification of the case when k = 2, showing
that Sn,2 is Cayley if and only if n is a prime power. We also give a sufficient
condition for Sn,3 to be Cayley and study other structural properties, such as
demonstrating that Sn,k always has a uniform shortest path routing.
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1 Introduction

In the design of parallel computing machines, the first step is to decide how pro-
cessors are linked. A static interconnection network has processor-to-processor
communication links among the processors. For example, they can be used for
message-passing architectures. (See [24] for details.) The underlying graph
topology is the corresponding interconnection network. The class of n-cubes
(or hypercubes) was the first major class of interconnection networks. The star
graph proposed by Chiang and Chen [11] has many advantages over the n-cube
such as lower degree and smaller diameter. Different aspects of star graphs and
related interconnection networks are studied extensively, including topological
issues [20,30,34,38], broadcasting issues [27,29,35], routing issues when faults
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are present [14, 16, 17], and many other additional topics [3, 4, 7, 25, 26]. Star
graphs are governed by one parameter. The star graph Sn has n! vertices and
it is an (n− 1)-regular graph. The n-cube, on the other hand, is an n-regular
graph on 2n vertices. Although star graphs are better than n-cubes in many
aspects, they do suffer from a scaling problem as the gap between two consec-
utive factorials is large. For this reason, two generalizations were developed,
one of which is the class of (n, k)-star graphs [11]. An (n, k)-star graph Sn,k is
governed by two parameters n and k, where 1 ≤ k < n. Moreover, Sn,k is an
(n−1)-regular graph on n!/(n−k)! vertices; in particular, Sn,n−1 is isomorphic
to the star graph Sn.

The star graph Sn is so named due to its generating graph being the
star K1,n−1. Given the star K1,n−1, we label the vertices using the symbols
1, 2, . . . , n with 1 being the center of the star. The graph Sn consists of n!
vertices, labeled by the permutations on n symbols, usually 1, 2, . . . , n. Two
vertices of Sn are adjacent if one permutation can be obtained from the other
by exchanging the symbols in position 1 and position i for some 2 ≤ i ≤ n.
(Here 1, 2, 3, . . . , n are used as position numbers as well as symbols in permu-
tations.) Note that (1, i) for 2 ≤ i ≤ n are precisely the edges in our labeled
K1,n−1. Hence in a sense K1,n−1 generates Sn and thus it is called the star
graph, although a more proper term would be the star-generated graph.

The (n, k)-star graph Sn,k, where 1 ≤ k < n, has all k-permutations on the
ground set {1, 2, . . . , n} as its vertices. (A k-permutation on {1, 2, . . . , n} is an
ordered k-tuple obtained by first choosing k symbols from this set and then
permuting the symbols.) There are two types of edges in Sn,k. A star edge is an
edge between two vertices where one k-permutation can be obtained from the
other by exchanging the symbols in position 1 and position i for some 2 ≤ i ≤
k. A residual edge is an edge between two vertices where one k-permutation
can be obtained from the other by replacing the symbol in position 1 by a
symbol not in the k-permutation. Clearly a vertex in Sn,k is incident to k − 1
star edges and n−k residual edges. It is also clear that Sn,n−1 is isomorphic to
Sn. Moreover, Sn,1 is the complete graph on n vertices, Kn. Since (n, k)-star
graphs were introduced to address shortcomings of star graphs, they have been
studied extensively in a wide range of topics [2, 6, 10,13,21,31,36,37,39].

Interconnection networks usually have parameters in which the number of
vertices is exponential or even combinatorial (that is, expressions involving
factorials) with respect to these parameters. One basic task is to find good
shortest path routing algorithms. However, the restriction here is that the
running time has to be polynomial with respect to these parameters and not
the number of vertices. Moreover, such algorithms need to be distributive in
nature. So to route from a source to a sink, at every step, one can only use the
information of the source, the sink and the current vertex (or information of all
the vertices at a fixed distance from the current vertex) to determine the next
step. This is impossible unless local information yields global information. In
other words, interconnection networks should have symmetry. This naturally
leads to using Cayley graphs as interconnection networks.
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Let G be a finite group and S be a set of elements of G such that the
identity of the group does not belong to S. The Cayley graph Γ (G,S) is the
directed graph whose vertex set is G, and there is an arc from u to v if and
only if there is an s ∈ S such that v = us. The graph Γ (G,S) is connected
if and only if S is a generating set for G. A Cayley graph is always vertex
transitive, so it is maximally arc-connected if it is connected; however, its
vertex connectivity may be low. If s ∈ S if and only if s−1 ∈ S, then there is
an arc from u to v if and only if there is an arc from v to u, so Γ (G,S) can be
simplified to be an undirected graph by replacing each such pair of arcs with
an undirected edge. Thus Sn is a Cayley graph in which G is the symmetric
group on {1, 2, . . . , n}, and S consists of the transpositions of the form (1, i)
for all 2 ≤ i ≤ k. Note that these (1, i)’s correspond precisely to the edges
of K1,n−1 that we have considered. Indeed, another generalization of Sn is to
replace K1,n−1 by a tree on n vertices and consider the edges of this tree as
transpositions. This is the class of Cayley graphs generated by transposition
trees [1,5,33]. It is worth noting that from pure combinatorics, one can study
factorizations of permutations into transpositions of special forms that are
related to star graphs or “factorization” of k-permutations [2, 22].

Although many classes of interconnection networks such as n-cubes, star
graphs, meshes and tori are Cayley graphs, it has remained an unanswered
question whether the (n, k)-star graphs are Cayley graphs. In fact, to the best
of our knowledge, this work is the first progress on this problem, beyond the
cases when k = n − 1, where the (n, k)-star graph is isomorphic to the star
graph, when k = 1, where the (n, k)-star graph is the complete graph on n
vertices, and the case when k = n − 2. In this paper, we give a complete
classification of when Sn,2 is a Cayley graph as well as partial results for
Sn,3. Moreover, we give evidence of why this problem is difficult. There is no
known efficient way of determining whether or not a graph is Cayley. (Even
if such an algorithm was known, it might not be easy to apply it as these
interconnection networks have many vertices with respect to their parameters.)
Another technique is to apply Sabidussi’s Theorem [28], which is difficult to
use in general. Yet another technique is to consider uniform shortest path
routings. This gives a necessary condition for a graph to be Cayley. Indeed, it
was once conjectured that such a condition is necessary and sufficient but was
later shown to be false. In Section 2, we show that Sn,k satisfies this uniform
shortest path routings necessary condition, which is a strong indication of why
the the corresponding classification problem is difficult. In Section 3, we give
the classification for Sn,2 together with partial results for Sn,3 and we give
concluding remarks in Section 4.
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2 Structural Properties of Sn,k

2.1 Uniform shortest path routings

A routing in a graph G = (V,E) is a set of paths R = {Puv | (u, v) ∈ V ×V, u 6=
v} where each path Puv starts at u and ends at v. A good routing should not
load any vertex too much, in the sense that not too many paths specified by the
routing should go through it. In order to measure the load of a vertex, Chung,
Coffiman, Reiman and Simon [12] proposed the notion of the forwarding index.
The vertex-forwarding index of G with respect to R is defined as the maximum
number of paths in R passing through any vertex of G. The vertex-forwarding
index of G, denoted by ξ(G), is defined as the minimum vertex forwarding
index of G with respect to R over all routings R of G.

A routing R is a shortest path routing if each path Puv in R is a shortest u
to v path. A shortest path routing is uniform if every node w ∈ V appears as
an internal vertex in exactly the same number of paths in R. In other words,
if lR(u) denotes the number of paths in R in which u appears as an internal
vertex, then in a uniform shortest path routing lR(u) must be the same for
every u ∈ V . The following result bounds the vertex-forwarding index of a
graph.

Theorem 1 (Chung et al. [12]) Let G be a connected graph of order n and
let dG(u, v) denote the distance between vertices u and v in G. Then

1

n

∑
u

∑
v 6=u

(
dG(u, v)− 1

)
≤ ξ(G) ≤ (n− 1)(n− 2),

and the lower bound is achieved if and only if there exists a uniform shortest
path routing in G. The graph that attains this upper bound is the star K1,n.

It is well known that all connected Cayley graphs have uniform shortest
path routings [19]. Therefore, since many of the well known interconnection
networks are Cayley graphs, including the star graph Sn and the n-cube Qn,
they have uniform shortest path routings. In fact, it was conjectured that
all vertex-transitive graphs contained uniform shortest path routings until a
counterexample was given in 2002 in [32]. In this section we show that Sn,k
always has a uniform shortest path routing, demonstrating that it has a nice
“Cayley-like” property. This also means that it will not be possible to show
any graphs in this class to be non-Cayley by attempting to show the absence
of uniform shortest path routings.

Algorithms to construct shortest paths in Sn,k are well known; the origi-
nal paper defining star graphs [11] defines a greedy shortest path algorithm.
Although the description in the original paper gives more freedom of choice
in the order of the moves, stated in terms of correcting internal and external
cycles, we restate the algorithm in a slightly different format to enforce a pre-
cise ordering of the swaps. Our algorithm follows the same pattern and uses a
lexicographical tie-breaking rule in case multiple greedy choices are possible.
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The algorithm will take a k-permutation on n symbols u = [u1, u2, . . . , uk] and
repeatedly swap the first symbol with one of the other k − 1 symbols until a
target vertex v = [v1, v2, . . . , vk] is reached.

Shortest path algorithm in Sn,k

1: Input: (u, v) ∈ V (Sn,k)× V (Sn,k), u 6= v
2: while u 6= v do
3: if u1 = vi for some i = 2, . . . , k then
4: Swap u1 with ui

5: else if vi /∈ {u2, . . . , uk} for some i = 2, . . . , k then
6: Choose the smallest such i, replace u1 with vi
7: else if vi 6= ui for some i = 2, . . . , k then
8: Choose the smallest such i, swap u1 with ui

9: else if u1 6= v1 then
10: Replace u1 with v1
11: end if
12: end while

Note that given u and v, this algorithm unambiguously produces a shortest
u – v path; we call any path produced by the algorithm a canonical shortest
path. We make the important observation that the algorithm depends in no
way on what the actual labels of the symbols in the k-permutations are but
only on their relative positions.

Theorem 2 For any n ≥ k ≥ 2, the graph Sn,k has a uniform shortest path
routing.

Proof We show that the set of canonical shortest paths is a uniform shortest
path routing. First, let V = V (Sn,k) and assign

R = {Puv | (u, v) ∈ V×V, u 6= v, Puv is the canonical shortest path from u to v in Sn,k}.

By construction, R is a shortest path routing; we are left to show that the
routing is uniform. For u ∈ V , let Ru be the set of paths in R that contain
u as an internal vertex. Let x, y ∈ V , and we show that |Rx| = |Ry| by
constructing a bijection between Rx and Ry; this demonstrates that the load
on each vertex is identical.

Let π : {1, . . . , n} → {1, . . . , n} be a permutation on n symbols that maps
x to y, i.e., if we replace each number in x with its image under π, we get y.
Note that there may be many choices for π. The permutation π induces a map
σπ : V → V defined the same way: for any vertex v ∈ V , replace each number
in v by its image under π, and the resulting k-permutation is σπ(v). It is easy
to see that for u, v ∈ V , the vertex σπ(u) is connected to σπ(v) by a star edge
or residual edge in Sn,k if and only if the same type of edge connects u and v
in Sn,k. Therefore σπ gives an automorphism on Sn,k. Letting P be the set of
all paths in Sn,k we define f : P → P as follows: for p = (p1, p2, . . . , pm) ∈ P
we let f(p) := p′ = (p′1, p

′
2, . . . , p

′
m) = (σπ(p1), σπ(p2), . . . , σπ(pm)). Note that

since σπ is an automorphism, we are guaranteed that f(p) ∈ P , moreover, f
must also be a bijection from P to P .
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Now suppose that p ∈ Rx, meaning that p = (p1, p2, . . . , pm) is the canon-
ical shortest path from p1 ∈ V to pm ∈ V , with x = pl for some 1 < l < m.
Considering f(p), we see that y = p′l and is thus an internal vertex on that
path. Moreover, since σπ has only replaced the symbols in p1 and pm, the rout-
ing algorithm applied to p′1 and p′m would produce precisely p′. This means
that p′ is the canonical shortest path from p′1 to p′m and p′ ∈ Ry. Since f is a
bijection from P to P , we have that the restriction of f to Rx is an injection
from Rx to Ry, and by a similar argument we can see that the restriction of
f−1 to Ry gives an injection from Ry to Rx. Thus the restriction of f to Rx
is a bijection from Rx to Ry, thus |Rx| = |Ry|.

We remark that there are many other definitions for canonical shortest
paths that would enable the same proof to work for Theorem 2. In particular,
it is only necessary that the shortest path algorithm computes a path from
u to v in a way that chooses the path based only on the relative positions
of symbols in the k-permutations u and v and not on the actual values or
ordering of those symbols.

Corollary 1 For any n ≥ k ≥ 2 we have

ξ(Sn,k) =
1

n

∑
u

∑
v 6=u

(
dSn,k

(u, v)− 1
)
.

We remark that the lower bound given in Theorem 1 is a simple adjustment
of the average distance of G. A related concept called the surface area is defined
as follows: Given a vertex v and an integer d, the surface area of G with radius
r at v is the number of vertices of distance d from v. It now follows from the
generating function of the surface area of Sn,k [8] that a closed form formula
of ξ(Sn,k) can be found. (Although the generating function is complicated, a
nicer formula for the average distance can be found.)

Analogous to the vertex-forwarding index, Heydemann et al. [19] have de-
fined the edge-forwarding index of G with respect to a routing R to be the
maximum number of paths in R passing through any edge in G. The edge-
forwarding index of a graph G, denoted π(G), is the minimum edge-forwarding
index over all routings R in G. Similar to Theorem 1, it was shown in [19] that

1

|E|
∑
u

∑
v 6=u

dG(u, v) ≤ π(G).

This bound holds at equality if and only if G admits a shortest path routing
in which every edge has equal load, we call such a routing an edge-uniform
shortest path routing. Gauyacq [15] has studied the edge-forwarding index of
star graphs and other Cayley graphs, and it is known that some, but not
all, Cayley graphs admit edge-uniform shortest path routings. In the following
remark we note that the (n, k)-star graph need not have edge-uniform shortest
path routings.
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Remark 1 Using a computer check we have computed that if G = S4,2 we
have:

1

|E(G)|
∑
u

∑
v 6=u

dG(u, v) = 15 and π(G) = 18.

In the above remark, the value of π(S4,2) was calculated by solving an integer
programming formulation of a multi-commodity flow model where feasible
solutions encoded routings and the objective function minimized the maximum
edge load of the routing. Although we have not further pursued this question,
we would conjecture that most (n, k)-star graphs do not admit edge-uniform
shortest path routings.

2.2 The structure of Sn,2 and Sn,3

The following lemmas provide an alternative definition of Sn,2 and Sn,3 in
terms of their structure. These representations provide a convenient way to
identify them later on.

Lemma 1 Let G = (V,E) be an (n− 1)-regular graph with n(n− 1) vertices.
Suppose that V can be partitioned into n sets of size n−1, labeled H1, . . . ,Hn,
such that the subgraph of G induced by the vertices in Hi is complete, moreover,
for any distinct i, j, there is exactly one pair of vertices u, v such that u in Hi,
v in Hj and (u, v) ∈ E, then G is isomorphic to Sn,2.

Proof Suppose that G satisfies the above conditions. We will show how to
label each vertex of G with a 2-permutation, giving the isomorphism between
G and Sn,2. Consider a vertex v belonging to a partite set Hj . Since v has
degree (n−1), it must have exactly n−2 neighbors in Hj and a single outgoing
edge whose other end is in another partite set Hi with i 6= j. For each v we
assign it the label [i, j] according to these two partite sets. Note that of the
n(n− 1) possible 2-permutations on 1, . . . , n, each appears exactly once since
we have assumed that there is a unique edge between any two of the partite
sets.

Finally, we will show that for any pair of nodes u, v, there is an edge
between them in G if and only if their corresponding labels correspond to
nodes connected in Sn,2. Edges in Sn,2 may come in only two forms. First, we
have an edge between [i, j] and [k, j] for i 6= k, and the nodes in G with these
labels must also be connected as they both appear in the same partite set Hj ,
which induces a complete subgraph. The second type of edge in Sn,2 will be
between nodes with labels [i, j] and [j, i] for some i 6= j. By the definition of
the labeling, this edge also appears in G and corresponds to the unique edge
between partite sets Hi and Hj . Since all edges in G fall into one of these two
categories, the edges in G are in direct correspondence with the edges of Sn,2
and the graphs are isomorphic.

Given a graph G, an edge in G is called a star-like edge if it is not in a
3-cycle, otherwise it is called a residual-like edge. A 6-cycle is called a star-like
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6-cycle if it contains solely star-like edges. This definition is motivated by the
fact that in Sn,3 (n ≥ 5) a star-like edge is a star edge, and a residual-like edge
is a residual edge.

Lemma 2 Let n ≥ 5 and G = (V,E) be an (n− 1)-regular graph with n(n−
1)(n− 2) vertices. Suppose that

(i) V can be partitioned into n sets of size (n−1)(n−2), labeled H1, . . . ,Hn,
such that the subgraph of G induced by the vertices in Hi is isomorphic to
Sn−1,2 for each i;

(ii) for any ordered triple (Hi, Hj , Hk) with distinct i, j, k, there is a unique
6-tuple of vertices (vkji, vjki, vikj , vkij , vjik, vijk) with the first two vertices in
Hi, the middle two in Hj, the last two in Hk, and these six vertices form a
star-like 6-cycle in that order;

(iii) for any distinct 1 ≤ i, j, k, ` ≤ n, vertices vkji and v`ji are joined by a
residual-like edge.

Then G is isomorphic to Sn,3.

Proof First we check that Sn,3 satisfies the above conditions. Let Hi be the
set of vertices of the form [j, k, i] with i fixed. Then we can relabel this vertex
in Hi by [j, k] for each j, k ∈ {1, . . . , n} \ {i}. In this relabeling the vertices
[j, k] and [j′, k] are adjacent whenever j 6= j′, and [j, k] and [k, j] are also
adjacent whenever j 6= k. Thus Hi is isomorphic to Sn−1,2. Moreover, to show
the existence of the 6-tuple, choose vabc = [a, b, c] whenever a, b, c are distinct.
The uniqueness of the 6-tuple is easy to see. It is also clear that this 6-cycle
is star-like. Moreover it is easy to see that condition (iii) is satisfied.

Now assume that G satisfies the given conditions. Since each Hi is iso-
morphic to Sn−1,2, each vertex is incident to at least n− 3 residual-like edges
within the Hi containing it. Graph G is (n−1)-regular, so each vertex has two
more incident edges, one within the Hi, one going outside. Thus each vertex
can be part of at most one star-like 6-cycle, so by property (ii), each has to
be part of exactly one. So the other two edges incident to each vertex must be
star-like edges, and the labellings in (ii) assign a unique label to each vertex.
Label vertex vijk with [i, j, k] for every distinct i, j, k. In this labeling, vertex
[k, j, i] is adjacent to [j, k, i] and [i, j, k], as well as to [`, j, i] for every ` 6= i, j, k
by (iii). So this labeling gives an isomorphism between G and Sn,3.

3 Cayley Classification

As a first step in determining which of Sn,k are Cayley graphs, we consulted
catalogs of Cayley graphs of small size such as
http://staffhome.ecm.uwa.edu.au/~00013890/remote/cayley/index.html.
This page lists all Cayley graphs with up to 31 vertices, organized by their
groups. Although Sn,k only falls within this size for some very small values of
n and k, we note that this catalog provided helpful insight. In particular, it
confirmed that S6,2 is not Cayley and that S5,2 is Cayley and generated from
the group Hol(C5).

http://staffhome.ecm.uwa.edu.au/~00013890/remote/cayley/index.html
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3.1 Cayley (n, k)-star graphs

It is well known that Sn,n−1 is isomorphic to the star graph Sn (see [11]); an
isomorphism from Sn to Sn,n−1 can be constructed by mapping each permu-
tation to the (n− 1)-permutation formed by truncating the last symbol. The
first proposition here follows directly from the fact that Sn,n−1 is isomorphic
to the star graph Sn, which is a Cayley graph for all values of n.

Proposition 1 Sn,n−1 is a Cayley graph for all n ≥ 2.

An obvious next step is to see whether Sn,n−2 is Cayley. Indeed, it is known
that such a graph is Cayley. We will simply attribute this as a folklore result.
As an interesting side note, recently researchers introduced a “new” class of
interconnection networks called the alternating group networks [23], and [40]
gave a proof that these networks are Cayley. However, [9] showed that these
graphs are isomorphic to Sn,n−2. For completeness, we will include a proof
here. Here we use the alternating group An, the subgroup of the symmetric
group made up of the even permutations.

Proposition 2 Sn,n−2 is a Cayley graph for n ≥ 3.

Proof Consider the Cayley graph G = Γ (An, S) where the set of generators S
is taken to be S = {(1, 2)(n−1, n), (1, 3)(n−1, n) . . . , (1, n−2)(n−1, n), (1, n−
1, n), (1, n, n− 1)}. These generators have two types. The first type will swap
the first symbol with any of the symbols in positions 2 up to n − 2 and also
swap the symbols in positions n − 1 and n. The second type are the three
cycles that rotate the first symbol with the symbols in position n− 1 and n.

We now construct an isomorphism f fromG to Sn,n−2. Let p = [p1, p2, . . . , pn]
be a permutation in An, we map p to the (n− 2)-permutation on n elements
by f(p) = [p1, p2, . . . , pn−2]. Note that f is a bijection from An to the (n− 2)-
permutations since an (n − 2)-permutation can be extended to an even per-
mutation on n elements in a unique way (there are only two choices for how
to append the remaining symbols; one results in an even permutation, and the
other one results in an odd permutation). Moreover, to see that f gives an
isomorphism, we observe that the generators in S correspond to precisely the
edges in Sn,n−2, that is, the edges corresponding to swapping the first symbol
in the (n − 2)-permutation with any of the other symbols present in another
position, or exchanging it with one of the symbols not appearing.

One conceivable approach for showing that some additional (n, k)-star
graphs are Cayley graphs would be to generate Cayley graphs of various
subgroups of the symmetric group and then map the vertices of these Cay-
ley graphs to the vertices of Sn,k by truncating the permutations to be k-
permutations. Although this has worked in the above two cases, we did not
find an obvious way of how this approach can be carried out in other cases.



10 Eddie Cheng, Li Li, László Lipták, Sangho Shim, Daniel E. Steffy

3.2 Spm,2 is Cayley

Let q = pm. Given a finite field Fq having q elements, it is well-known [18,
Theorem 5.3] that the multiplicative group F ∗q of nonzero elements is cyclic,
thus if we let σ be a generator of F ∗q , then

F ∗q = 〈σ〉 = {1, σ, . . . , σq−2} ∼= Cq−1.

Define the semidirect product

Fq o F ∗q = {(a, b) | a ∈ Fq, b ∈ F ∗q }, (1)

where the group operation is given by (a, b)(a′, b′) = (a + ba′, bb′). Note that
Fq o F ∗q has q(q − 1) elements. Introduce notation for the following elements
in Fq o F ∗q :

1 = (0, 1), t = (0, σ), s = (1,−1).

We also give an equivalent definition. Recall that the general linear group
and the projective general linear group are defined as follows:

GL(2, q) :=

{[
a b
c d

]
∈M2(Fq)

∣∣∣∣ ad− bc 6= 0

}
,

PGL(2, q) := GL(2, q)

/{[
a 0
0 a

]
∈M2(Fq)

∣∣∣∣ a 6= 0

}
.

Then Fq o F ∗q can be viewed as a subgroup of GL(2, q) and PGL(2, q):

Fq o F ∗q
∼=
{[

b a
0 1

]
∈ GL(2, q)

}
∼=
{[

b a
0 1

]
∈ PGL(2, q)

}
, (2)

where the isomorphism is given by

(a, b) 7→
[
b a
0 1

]
.

Lemma 3 The elements of G listed below are all distinct:

Fq o F ∗q = {1, t, . . . , tq−2} ∪ {tistj | 0 ≤ i, j ≤ q − 2}. (3)

Moreover, s2 = 1, and for each i 6≡ 0 (mod q − 1), there exist unique j, k 6≡ 0
(mod q − 1) such that

stistjstk = 1. (4)

As a consequence, Fq o F ∗q is generated by s and t.
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Proof We first note that s 6= 1 and s2 = 1, so s has order 2.

Next we show that all the q(q− 1) elements listed in (3) are distinct, then
because FqoF ∗q has exactly q(q−1) elements according to (1), we conclude that
(3) lists all elements. Indeed, since the order of t is q−1, the powers 1, t, . . . , tq−2

are distinct from each other. Next, an element of form tk is distinct from
an element of from tistj . Otherwise assume tk = tistj , then (1,−1) = s =
tk−i−j = (0, σk−i−j), which is absurd. Furthermore, elements of the form
tistj are distinct from each other. To see this, assume tistj = tkst` with
0 ≤ i, j, k, ` ≤ q − 2. Then ti−ks = st`−j , hence (σi−k,−σi−k) = (1,−σ`−j),
hence i = k and j = `. This completes the proof that all elements listed in (3)
are distinct.

In the last statement of the lemma we rewrite (4) as st−is = tjstk. Then
the existence and uniqueness of j and k follows from (3) once we show that
j, k 6≡ 0 (mod q − 1). Indeed, if j ≡ 0, then st−is = stk, hence t−is = tk,
which is impossible because of (3); similarly k ≡ 0 is impossible.

Proposition 3 Let p be a prime number, m be a positive integer. Then Spm,2
is a Cayley graph.

Proof Let q = pm, G = FqoF ∗q , S = {t, t2, . . . , tq−2, s}. It follows from Lemma
3 that S generates G and S = S−1. We claim that

Γ (G,S) ∼= Sq,2.

Let T be the subgroup 〈t〉 = {1, t, t2, . . . , tq−2} ofG. Then Γ (G,S) has com-
plete subgraphs H1 = T,H2 = sT,H3 = tsT,H4 = t2sT, . . . ,Hq = tq−2sT ; all
isomorphic to the complete graph Kq−1. Thanks to Lemma 2.3, it suffices to
prove that for any distinct i, j (1 ≤ i < j ≤ q), there is exactly one pair of
elements u ∈ Hi, v ∈ Hj such that (u, v) is an edge in Γ (G,S). We prove this
by considering two cases:

Case 1: i = 1. Denote u = ta, v = tj−2stb where 2 ≤ j ≤ q. Then (u, v)
is an edge if and only if v = us or v = utc for some 1 ≤ c ≤ q − 2. Using
Lemma 3, the second equation, which is tj−2stb = ta+c, never holds; and the
first equation, which is tj−2stb = tas, holds if and only if a = j − 2 and b = 0.
Thus there is exactly one edge between H1 and Hj .

Case 2: i ≥ 2. We need to show that there exists a unique pair a, b (0 ≤
a, b ≤ q − 2) such that u = tista and v = tjstb are joined by an edge, that is,
v = us or v = utc for some 1 ≤ c ≤ q − 2. Using Lemma 3 and that i < j, the
second equation never holds. The first equation is equivalent to

tistas = tjstb,

which is equivalent to

stj−istbst−a = 1.

This equation has a unique solution of (a, b) by Lemma 3, finishing the proof.
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3.3 Non-Cayley Sn,2

Lemma 4 If Γ (G,S) ∼= Sn,2, where n ≥ 4, then

S = (T \ {1}) ∪ {s},

where T is a subgroup of G of order n− 1, and s is an order 2 element.
Moreover, V (G) = T ∪ TsT = T ∪ {tst′ | t, t′ ∈ T}, and this is a disjoint

union.

Proof The graph Sn,2 has the property that each vertex is incident to exactly
one edge that is not in a 3-cycle. Assume that vertex 1 is joined to vertex s by
such an edge e. Consider the automorphism f : g 7→ gs of Sn,2. It must send
the edge e to an edge incident to s that is not in a 3-cycle, which has to be e.
Thus f(s) = 1, in other words, s2 = 1. Since we assume 1 /∈ S, s is of order 2.

Now consider the complete subgraph K ∼= Kn−1 of Sn,2 that contains
1. None of the edges between K and Sn,2 − K are in 3-cycles, so they all
correspond to s. All edges inside K correspond to S \ {s}, thus T := (S \
{s}) ∪ {1} is closed under multiplication, therefore must be a subgroup of G.

Next, note that the n left cosets of T correspond to the n complete sub-
graphs of Sn,2 isomorphic to Kn−1. By the property of Sn,2, any two cosets of T
are joined by an edge, which must correspond to s because it is not in a 3-cycle.
Therefore, for an arbitrary element x = at2 ∈ aT such that a ∈ V (G), t2 ∈ T ,
and x 6∈ T , there exists an edge between aT and T , so there is an element
at1 ∈ aT and t ∈ T such that at1 = ts. Then x = at2 = (tst−11 )t2 = tst′ ∈ TsT
where t′ = t−11 t2. This shows V (G) = T ∪ TsT .

Finally, note that |T | = n− 1 and |TsT | ≤ (n− 1)2, thus

n(n− 1) = |Sn,2| = |G| ≤ |T |+ |TsT | ≤ (n− 1) + (n− 1)2 = n(n− 1).

So both inequalities must be equalities. This implies that all elements in T
and {tst′ | t, t′ ∈ T} are distinct from each other.

Proposition 4 If Sn,2 ∼= Γ (G,S), where n ≥ 4 (using the notation in Lemma 4),
then the following hold:

(i) If g ∈ G \ T , then the (n − 1) conjugate elements tgt−1 for t ∈ T are
all distinct and not in T .

(ii) If g ∈ G \ T , then T ∩ gTg−1 = {1}. In particular, T is not normal.
(iii) There are n distinct conjugate subgroups of T in G, namely T and

tsTst−1 for each t ∈ T . The intersection of any two distinct conjugate sub-
groups contains only the identity.

(iv) n is a prime power.

Proof (i) Assume t 6= t′ are two elements in T such that tgt−1 = t′gt′−1. By
Lemma 4, there exist t1, t2 ∈ T such that g = t1st2. Then

tt1st2t
−1 = t′t1st2t

′−1
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Again by Lemma 4, tt1 = t′t1, t2t
−1 = t2t

′−1. This contradicts the assumption
t 6= t′.

Furthermore, if tgt−1 ∈ T , then g ∈ t−1Tt = T , contradicting to the
assumption.

(ii) Assume t ∈ T ∩ gTg−1. By Lemma 4, there exist t1, t2 ∈ T such that
g = t1st2. So t ∈ gTg−1 implies that there exists t′ ∈ T , such that

t = (t1st2)t′(t1st2)−1.

Then
tt1st2 = t1st2t

′,

implying tt1 = t1, t2 = t2t
′, thus t = 1.

(iii) If g ∈ T , then gTg−1 = T . If g /∈ T , write g = tst′ with t, t′ ∈ T . Then

gTg−1 = tst′Tt′−1st−1 = tsTst−1.

So all conjugacy subgroups of T are listed as in (iii).
Next we show that these n conjugate subgroups are distinct. It follows from

(ii) that T is distinct from the rest. If two conjugate subgroups coincide, so
t1sTst

−1
1 = t2sTst

−1
2 , then

T = (st−11 t2s)T (st−11 t2s)
−1.

By (ii), st−11 t2s = 1, thus t1 = t2.
Now we show that the intersection of any two distinct conjugate subgroups

contains only the identity. If one of these two subgroups is T , this follows from
(ii). Now assume

t ∈ t1sTst−11 ∩ t2sTst
−1
2

where t1, t2 ∈ T , t1 6= 1, and t1 6= t2. Then

st−11 tt1s ∈ T ∩ st−11 t2sTst
−1
2 t1s = {1}.

So st−11 tt1s = 1, implying t = 1.
(iv) Assume the contrary and let p, q be two distinct prime factors of n. Let

mp and mq be the numbers of order p and order q elements in G, respectively.
By Cauchy’s Theorem there is an element g ∈ G of order p. By (i), its n − 1
conjugates tgt−1 (t ∈ T ) are all distinct and not in T . All these conjugates
have order p. So mp ≥ n− 1. Similarly mq ≥ n− 1.

Meanwhile, it follows from (iii) that

|T ∪
⋃
t∈T

tsTst−1| = n(n− 2) + 1 = n2 − 2n+ 1.

Since all the conjugates of T have order n − 1 and p, q - n − 1, there are no
elements among the conjugates of T that have order p or q. So we have at least
(n2−2n+ 1) +mp+mq distinct elements in G, which leads to a contradiction
since

(n2− 2n+ 1) +mp +mq ≥ (n2− 2n+ 1) + (n− 1) + (n− 1) > n(n− 1) = |G|.
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Now combine Proposition 3 with Proposition 4 (and the fact that S3,2 is a
Cayley graph), we have

Theorem 3 The graph Sn,2 is a Cayley graph if and only if n is a prime
power.

3.4 Spm+1,3 is Cayley

Lemma 5 Let p be an odd prime and σ be a primitive root of p. We have the
following group isomorphism:

Fp o F ∗p
∼= 〈a, x | ap−1 = xp = 1, ax = xσa〉.

Proof Denote the right hand side by H. Elements in the right hand side are of
the form xiaj , where 0 ≤ i ≤ p− 1, 0 ≤ j ≤ p− 2, so |H| ≤ p(p− 1). Consider
the homomorphism

ψ : H 7→ Fp o F ∗p

determined by ψ(a) = t = (0, σ), ψ(x) = st
p−1
2 = (1, 1). It is easy to check

that

ψ(a)p−1 = ψ(x)p = (0, 1) = 1FpoF∗
p
, ψ(a)ψ(x) = (σ, σ) = ψ(x)σψ(a).

Thus ψ is well-defined. Since ψ(a) = t, ψ(xa−q) = s, and the group FpoF ∗p is
generated by t and s, we conclude that ψ is surjective. Since |H| ≤ p(p− 1) =
|Fp o F ∗p |, we conclude that ψ is an isomorphism.

Lemma 6 Let n ≥ 5, and assume that G is a group of order n(n− 1)(n− 2)
generated by a subgroup T of order n − 2 together with two elements b and
c of order 2. Let H = 〈T, b〉. Assume that Γ (H, (T \ {1}) ∪ {b}) ∼= Sn−1,2,
(bc)3 = 1, and

H ∩ (bc)H(bc)−1 ⊆ T, T ∩ (bc)T (bc)−1 = {1}.

Then Γ (G, (T \ {1}) ∪ {b, c}) ∼= Sn,3.

Proof We shall prove that Γ (G,S) ∼= Sn,3 for S = (T \{1})∪{b, c} by verifying
the three conditions in Lemma 2.

For (i) Let H1(= H), H2, . . . ,Hn be the left cosets of H in G. Then by
assumption, all the induced subgraphs are isomorphic to Sn−1,2.

(ii) It is easy to check that b, bc, bcb, bcbc, bcbcb, bcbcbc(= 1) are distinct from
each other (they actually form the group S3). So at every vertex v of G there
is a star-like 6-cycle passing through it, namely (v, vb, vbc, vbcb, vbcbc, vbcbcb).
Since each vertex of G is incident to two star-like edges, all the star-like 6-cycles
are disjoint.

We claim that there is at most one star-like 6-cycle satisfying the condition
in (ii). Indeed, if (v, vb, . . . , vbcbcb) and (v′, v′b, . . . , v′bcbcb) are such star-like
6-cycles, then v′ ∈ vH, v′bc ∈ vbcH, v′bcbc ∈ vbcbcH. Thus

v−1v′ ∈ H ∩ (bc)H(bc)−1 ∩ (bc)2H(bc)−2 ⊆ T ∩ (bc)T (bc)−1 = {1},
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so v = v′.
The claim implies that for every unordered pair (j, k) (so that i, j, k are

distinct) there is at most one star-like 6-cycle contained in Hi∪Hj ∪Hk. Since
there are

(
n−1
2

)
such unordered pairs, there are at most

(
n−1
2

)
star-like 6-cycles

intersecting with Hi. On the other hand, there are |Hi|
2 =

(
n−1
2

)
star-like edges

in Hi, and each vertex in Hi is incident to exactly one such edge, so there
should be exactly

(
n−1
2

)
star-like 6-cycles intersecting with Hi. Therefore for

every unordered pair (j, k) (so that i, j, k are distinct) there is exactly one
star-like 6-cycle contained in Hi ∪Hj ∪Hk. This implies (ii).

(iii) Since vkji, v`ji ∈ Hi, and vkjibc, v`jibc ∈ Hj , we get

v−1kjiv`ji ∈ H ∩ (bc)H(bc)−1 ⊆ T.

So vkji and v`ji are joined by a residual-like edge.

Proposition 5 If p is a prime number and m is a positive integer, then
Spm+1,3 is a Cayley graph.

Proof We prove the statement by verifying the conditions in Lemma 6.
Let n = pm+1, q = pm, G = PGL(2, q), S = {Ai | i = 1, . . . , q−1}∪{B,C}

where

A =

[
σ 0
0 1

]
, B =

[
−1 1
0 1

]
, C =

[
−1 0
−1 1

]
.

First, |G| = n(n − 1)(n − 2). Indeed, it is well known that |GL(2, q)| =
(q2−1)(q2−q), so |G| = (q2−1)(q2−q)/(q−1) = (q+1)q(q−1) = n(n−1)(n−2).

Then we show that A,B,C generate G. Indeed, the cyclic group

T = 〈A〉 =

{[
a 0
0 1

] ∣∣∣∣ a 6= 0

}
=

{[
a 0
0 b

]
∈ PGL(2, q)

}
has order (n−2) and contains all diagonal matrices in G. Then A and B gener-

ate B

[
−1 0
0 1

]
=

[
1 1
0 1

]
, which generates all matrices

[
1 a
0 1

]
for a ∈ Fq. So A and

B generate all the upper triangular matrices. Then note that BCB =

[
0 1
1 0

]
,

so all the elementary matrices can be generated by A,B,C. Using elementary
matrices and upper triangular matrices we can generate G.

It is straightforward to check that B and C have order 2, and (BC)3 =[
1 0
0 1

]
.

It follows from (2) and Proposition 3 that

H = 〈T,B〉 = 〈A,B〉 =

{[
b a
0 1

]
∈ PGL(2, q)

}
∼= Fq o F ∗q

and Γ (H,S \ {C}) ∼= Sq,2.
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Next we verify H ∩ (BC)H(BC)−1 ⊆ T . For any

D =

[
b a
0 1

]
∈ H ∩ (BC)H(BC)−1,

we have

(BC)−1D(BC) =

[
−a+ 1 a+ b− 1
−a a+ b

]
∈ H,

implying that a = 0. Thus D ∈ T .

Finally we check T ∩ (BC)T (BC)−1 = {1}. In the above assume further

that D ∈ T ∩ (BC)T (BC)−1. Then a = 0 and b = 1. So D =

[
1 0
0 1

]
.

4 Conclusions

We have studied the question of which (n, k)-star graphs are Cayley. The
conclusion that they are sometimes but not always Cayley could be seen as
surprising since most of the other widely studied interconnection networks are
Cayley graphs. The results in this paper also provide new insight into the
structure of (n, k)-star graphs.

It would be desirable to ultimately find a complete classification. Although
this may prove to be a very difficult problem, there are some next steps that
might be tractable. First, we conjecture that the condition given in Proposi-
tion 5 is both necessary and sufficient, giving the following.

Conjecture 1 Sn,3 is Cayley if and only if n− 1 is a prime power.

Additionally, we believe that the methods applied in this paper may lead to
insight into the structure of Sn,k for other small values of k.

Our results also lead us to make another conjecture.

Conjecture 2 If Sn,k is Cayley and k ≥ 2, then Sn−1,k−1 is Cayley.

There are two reasons why we believe this might be the case. First, our results
in Proposition 5 and Theorem 3, and all other results in the paper match
up in a way consistent with this conjecture. Second, as Sn,k contains many
subgraphs of Sn−1,k−1, we think it is possible that non-Cayley subgraphs of
Sn−1,k−1 may indicate structural properties that could also prevent Sn,k from
being Cayley. We remark that the converse of Conjecture 2 is not true as S5,1

is Cayley but S6,2 is not Cayley. Nevertheless it may still be true for certain
values of k.

As a final note, we observe that since the (n, k)-star graphs are well studied
and have been shown to have a wide variety of nice structural properties, they
could be used as counterexamples to conjectures about sufficient conditions
for graphs being Cayley.
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