
MAXIMAL VERTEX-CONNECTIVITY OF
−−→
Sn,k

EDDIE CHENG, WILLIAM A. LINDSEY, AND DANIEL E. STEFFY

Abstract. The class of star graphs is a popular topology for interconnection networks.

However it has certain deficiencies. A class of generalization of star graphs called (n, k)-star

graphs was introduced in [12] to address these issues. In this paper we will consider the

vertex-connectivity of the directed (n, k)-star graph,
−−→
Sn,k, given in [8], and show that it is

maximally connected.

1. Introduction

Directed interconnection networks have gained much attention in the area of distributed

computing. Recent research in this area includes [5, 11, 15, 16, 20, 22]. The study of using

unidirectional hypercubes as the basis for high speed networking can be found in [15]. For a

more general model, we refer the reader to [11] for an architectural model for the studies of

unidirectional graph topologies and a specific application, which also includes a comparison

of the diameters among some unidirectional interconnection networks.

One of the most popular interconnection networks is the star graph, Sn, proposed in [24].

It was introduced as a competitive model to the hypercube, Qn. It has many advantages over

the hypercube including lower degree and a smaller diameter. Day and Tripathi proposed an

orientation of the star graph in [20]. They gave an efficient near-optimal distributed routing

algorithm for it. One of the main criteria of a good interconnection network topology is

connectivity. The ideal situation is for a unidirectional graph topology to have the highest

possible connectivity. Indeed, Jwo and Tuan [22] showed that the unidirectional hypercube

proposed by Chou and Du [15] has this important property. Since the star graph was

introduced as a competitive alternative to the hypercube, it is necessary that an orientation

for the star graph has that same property for it to remain competitive. Indeed, [4] studied
1
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the arc-connectivity of this graph. Later [6] showed that it has the highest possible vertex-

connectivity.

Although Sn has proven to be an attractive alternative to Qn, one drawback it has is the

restriction on the number of vertices. (Qn also has this drawback though not as severe.) Since

Sn has n! vertices, anyone wanting to build a multiprocessor network using this topology is

forced to build one with n! vertices for some value of n. This led in part to the introduction

of (n, k)-star graphs in [12], which is a generalization of star graphs. This graph is denoted

by Sn,k. In [8] an orientation of these graphs is proposed and their properties including arc-

connectivity, diameter as well as distributed routing algorithms are studied. In this paper,

we show that they have the highest possible vertex-connectivity.

2. Preliminaries

Some recent papers on star graphs or generalizations of star graphs include [1–10, 12–14,

17–21, 23–26]. Basic terminology in graph theory can be found in [27]. Given a directed

graph
−→
D ,
←−
D denotes the graph obtained from

−→
D by reversing directions on all arcs. An

(n, k)-star graph Sn,k with 1 ≤ k < n is governed by the two parameters n and k. The

vertex-set of Sn,k consists of all the permutations of k elements chosen from the ground

set {1, 2, . . . , n}. Two vertices [a1, a2, . . . , ak] and [b1, b2, . . . , bk] are adjacent if one of the

following holds:

(1) There exists a 2 ≤ r ≤ k such that a1 = br, ar = b1 and ai = bi for i ∈ {1, 2, . . . , k} \

{1, r}.

(2) ai = bi for i ∈ {2, . . . , k}, a1 6= b1.

Hence given a vertex [a1, a2, . . . , ak], it has k − 1 neighbours via the adjacency rule (1) by

exchanging a1 with each of ai, i ∈ {2, 3, . . . , k}, and it has n−k neighbours via the adjacency

rule (2) by exchanging a1 with each element in {1, 2, . . . , n}\{a1, a2, a3, . . . , ak}. We note that

adjacency rule (1) is precisely the rule for star graphs. In keeping with the terminology for

star graphs, an edge corresponding to this rule is a star-edge; it will be called an i-edge if the

exchange is between position 1 and position i where i ∈ {2, 3, . . . , k}. An edge corresponding
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to the second rule is a residual-edge. Figure 1 gives S4,2. (We note that for convenience, we

23

14 41

24 34 21 31

42 12 43 13

32

Figure 1. S4,2

write the (n, k)-permutation [i, j] as ij, for example, [1, 4] as 14.) Note that given an edge

in Sn,k with the labellings of its two end-vertices, one can immediately determine whether

it is a star-edge or a residual-edge. The family of Sn,k generalizes the star graph, as Sn,n−1

is isomorphic to the star graph Sn. For Sn,n−1, the unique residual-edge for each vertex can

be viewed as an n-edge in Sn. Since the graph reduces to the complete graph if k = 1, we

assume k ≥ 2 for the rest of the paper.

The next result contains some elementary properties of (n, k)-star graphs whose proofs

are obvious. Additional properties can be found in [12].

Proposition 2.1. The (n, k)-star graph Sn,k has n!/(n− k)! vertices and is a regular graph

with degree n− 1. Moreover,

(1) Let {x1, x2, . . . , xk} ⊆ {1, 2, . . . , n} with k ≥ 3. Let G be the subgraph of Sn,k induced

by vertices whose labellings are permutations of x1, x2, . . . , xk. Then G is isomorphic

to the star graph Sk.

(2) Let {x2, x3, . . . , xk} ⊆ {1, 2, . . . , n}. Let G be the subgraph of Sn,k induced by vertices

of the form [y1, x2, x3, . . . , xk] where y1 ∈ {1, 2, . . . , n} \ {x2, x3, . . . , xk}. Then G is

isomorphic to Kn−k+1, the complete graph on n− k + 1 vertices.

(3) Let G be a subgraph of Sn,k with k ≥ 3 induced by vertices with labellings having the

same symbol in the rth position where 2 ≤ r ≤ k. Then G is isomorphic to Sn−1,k−1.
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A star subgraph of Sn,k using the rule in (1) of Theorem 2.1 will be called a fundamental

star. If k = 2, then the subgraph via (1) of Theorem 2.1 is K2, which is not a star graph.

However, we will still refer to it as a fundamental star. (The star graph Sn was defined for

n ≥ 3. If one backwardly extends the definition to the case n = 2, then “S2” is indeed

K2.) A complete subgraph of Sn,k using the rule in (2) of Theorem 2.1 will be called a

fundamental clique. It is clear that there are
(

n

k

)

fundamental stars and
(

n

k−1

)

(k − 1)! =

n!
(n−k+1)!

fundamental cliques.

3. Unidirectional (n, k)-star graphs

A directed graph D is said to be maximally connected if it is k-connected with k =

minv∈V (D){δ(v), ρ(v)} where δ(v) (ρ(v)) is the out-degree (in-degree) of v. In [8], an orien-

tation for Sn,k is introduced together with some of its properties. We will show that this

directed graph, denoted by
−−→
Sn,k, is maximally connected. This result was proven to be correct

for the case
−−−→
Sn,n−1 (in the language of star graphs) in [6].

A directed star-edge is a star-arc. A directed residual-edge is a residual-arc. Now associate

each vertex [a1, a2, . . . , ak] in
−−→
Sn,k, with the following associated permutation on n symbols

[a1, a2, . . . , ak, x1, . . . , xn−k] where x1 < x2 < . . . < xn−k. A vertex in
−−→
Sn,k is even (odd) if its

associated permutation is even (odd). It is easy to see that each vertex belongs to exactly

one fundamental star and one fundamental clique. Suppose an r-regular graph with odd

vertices and even vertices is given. If r is even, then an assigned orientation is balanced if

the resulting directed graph is r
2
-regular. If r is odd, then an assigned orientation is odd-

more-out if (1) the out-degree is d r
2
e and the in-degree is b r

2
c for every odd vertex in the

resulting graph, and (2) the in-degree is d r
2
e and the out-degree is b r

2
c for every even vertex

in the resulting graph. (The term “odd-more-out” indicates an odd vertex has a higher

out-degree than in-degree.) The term odd-more-in is defined similarly. The orientation rule

given in [8] satisfies the objective stated in Table 1. This will give an odd (even) vertex with

in-degree (out-degree) dn−1
2
e and out-degree (in-degree) bn−1

2
c, that is, balanced if n is odd

and odd-more-in if n is even.
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Table 1. Orientation objective

k n− k + 1 fundamental star fundamental clique

even even odd-more-in odd-more-out Figure 2 (basic)

even odd odd-more-in balanced Figure 4 (basic)

odd even balanced odd-more-in Figure 3 (reverse)

odd odd balanced balanced Figure 4 (basic)

We will now give the orientation of Sn,k. As mentioned earlier, it can be locally determined

if an edge in Sn,k is a star-edge or a residual-edge. For the star-edges it is easy to see that

the end-vertices of a star-edge are of opposite parity. Suppose πaπb is a star-edge, where

πa and πb are vertices, without loss of generality we may assume πa is even and πb is odd.

We use the standard Day-Tripathi rule for star graphs: if πaπb is an i-edge then the arc is

oriented from πa to πb when i is even and from πb to πa when i is odd. This accomplishes

the orientation objective for the fundamental stars given in Table 1.

To orient residual-edges, we do the following. For any residual-edge it is easy to see

which fundamental clique it belongs to. The vertices will be of the form πi = [xi, a2, . . . , ak]

and πj = [xj, a2, . . . , ak], and they belong to the fundamental clique with vertices π1 =

[x1, a2, . . . , ak], π2 = [x2, a2, . . . , ak], . . . , πn−k+1 = [xn−k+1, a2, . . . , ak] where x1 < x2 < . . . <

xn−k+1. This is the natural ordering of the vertices in this fundamental clique and π1 is its

leading vertex. It is clear that if we consider the vertices in this order, the parity of their

associated permutations alternates. In [8], the following easy result is used to orient the

fundamental cliques.

Proposition 3.1. Let v1, v2, . . . , vm be vertices of Km with m ≥ 2 where vi is odd if and only

if i is odd. Suppose i < j. Then orient the edge from vi to vj if they have different parity

and orient the edge from vj to vi if they have the same parity. Then the resulting directed

graph has an odd-more-out orientation if m is even and balanced orientation if m is odd.
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Proposition 3.1 suggests the following rule for the case with k even and n − k + 1 even.

Basic rule: If the leading vertex π1 is odd, orient the edges as follows: Given two vertices πi

and πj where xi < xj, orient the edge from πi to πj if πi and πj have different parity, and

from πj to πi if πi and πj have the same parity. If the leading vertex is even, the orientations

are reversed. See Figure 2 for an example. For the case with k odd and n− k + 1 even, we

OEO E O E OE

Figure 2. Basic rule for the natural ordering from left to right

reverse the direction resulting from the basic rule and it is the reverse rule. See Figure 3 for

an example. If n − k + 1 is odd, [8] observed that the orientation resulting from the basic

O E O E E O E O

Figure 3. Reverse rule for the natural ordering from left to right

rule and the reverse rule give a balanced orientation. The results in [8] are independent of

the precise orientation. In this paper, it is more natural to use the basic rule. See Figure 4

for an example.

OE E
O O E

O E O
E

Figure 4. The natural ordering from left to right

One can check that
−−−→
Sn,n−1 is isomorphic to the orientation of the star graph Sn given in [20].

Additional properties about this orientation and justification behind it can be found in [8].
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Since the orientation objective in Table 1 is achieved and each vertex belongs to exactly one

fundamental star and one fundamental clique, we have the following proposition.

Proposition 3.2. 1 Let k ≥ 2. If n− 1 is even then
−−→
Sn,k is n−1

2
-regular. If n− 1 is odd then

every odd (even) vertex in
−−→
Sn,k has in-degree (out-degree) dn−1

2
e and out-degree (in-degree)

bn−1
2
c.

4. Maximal Connectivity

We first consider the connectivity result for the directed complete graph. Define
−→
Kn by

orienting Kn on {1, 2, . . . , n} as follows: For vertices u and v with u > v, direct the arc from

u to v if u and v are of different parity, and from v to u if they are of the same parity. (Note

that the orientation given here is the opposite of Proposition 3.1. The reason for this is to

make the statement of Lemma 4.5 cleaner.)

Lemma 4.1. Let 2p + 1 ≥ 3. Then
−−−→
K2p+1 is p-connected.

Proof. We will show this by induction. Clearly
−→
K3 is 1-connected and

−→
K5 is 2-connected.

Partition the vertices of
−−−→
K2p+1 as follows: Place 2p and 2p + 1 in their own sets and let A

be all the odd indexed vertices besides 2p + 1, let B be all the even indexed vertices besides

2p, as pictured in Figure 5.

{ {A                                B

2p                                      2p+1                            

1       3       5              2p-1          2       4       6              2p-2

Figure 5. Graph from Lemma 4.1

1Since the routing result in [8] is designed for k ≥ 3, some results including this one was stated for k ≥ 3.
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Consider deleting S from
−−−→
K2p+1 where |S| = p− 1.

Case 1: 2p, 2p + 1 /∈ S

Since |S| = p − 1 and |A| = p, the digraph X induced by 2p, 2p + 1, and A \ S is

strongly connected, as there is a directed arc from 2p + 1 to 2p, and every vertex in

A has an arc leaving it directed into 2p + 1 and an arc entering it from 2p. Now for

every u ∈ B \ S, there is an arc from u to X and vice versa. Hence
−−−→
K2p+1 \ S is

strongly connected.

Case 2: 2p, 2p + 1 ∈ S

Since
−−−→
K2p+1 \ {2p, 2p + 1} is isomorphic to

−−−→
K2p−1 which is (p − 1)-connected by

induction, deleting S\{2p, 2p+1} from it will not disconnect it since |S\{2p, 2p+1}| =

p− 3. Therefore
−−−→
K2p+1 \ S is strongly connected.

Case 3: 2p ∈ S, 2p + 1 /∈ S

By our induction step,
−−−→
K2p−1 is (p− 1)-connected. Since |S \ {2p}| = p− 2 we know

that
−−−→
K2p−1 \ (S \ {2p}) must be strongly connected. Since |A| = p and |B| = p − 1

and |S \ {2p}| = p− 2, there must be vertices from both A and B that are not in S.

Since every vertex in B has an arc directed to it from 2p + 1 and every vertex in A

has an arc directed from it to 2p + 1,
−−−→
K2p+1 \ S is strongly connected.

Case 4: 2p /∈ S, 2p + 1 ∈ S

Similar to case 3.

Therefore,
−−−→
K2p+1 is p-connected. �

Lemma 4.2. Let 2p ≥ 2. Then
−−→
K2p is (p− 1)-connected.

Proof. Since
−−→
K2p is isomorphic to

−−−→
K2p+1 \{2p+1}, the result follows from Lemma 4.1. (Note

that if p = 1, the result is trivially true.) �

Proposition 4.3. Let F be a fundamental clique in
−−→
Sn,k. Then F is isomorphic to either

−−−−→
Kn−k+1 or

←−−−−
Kn−k+1 and hence

⌊

n−k
2

⌋

-connected.
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Proof. Since F has n − k + 1 ≥ 2 vertices, we may apply Lemma 4.1 and Lemma 4.2. Let

v1, v2, . . . , vn−k+1 be vertices of F in its natural ordering. Then by the definition of
−−→
Sn,k, the

mapping φ from V (F ) to {1, 2, . . . , n− k + 1} defined by φ(vi) = i is an isomorphism from

F to either
−−−−→
Kn−k+1 or

←−−−−
Kn−k+1. �

Lemma 4.4. Suppose n ≥ 3. Let H be the graph obtained from Sn,2 by contracting each

fundamental clique to a vertex. Then the resulting graph is isomorphic to Kn.

Proof. Since there is exactly one edge between every pair of fundamental cliques, the result

follows. �

Lemma 4.5. Let
−→
H be the directed graph obtained from

−−→
Sn,2 by contracting each fundamental

clique to a vertex, then the resulting directed graph is isomorphic to
−→
Kn and hence

⌊

n−1
2

⌋

-

connected.

Proof. Since k = 2, each fundamental clique is uniquely identified by the symbol in the

second position of its vertices. Let Fi represent the fundamental clique where i is located in

the second position, that is, vertices in Fi are of the form [x, i] where x ∈ {1, 2, . . . , n} \ {i}.

Now for each distinct Fi and Fj there is exactly one arc between them, which is between

vertices [j, i] and [i, j]. Hence we labelled the vertices of
−→
H by the fundamental cliques of

−−→
Sn,2, namely, F1, F2, . . . , Fn. To show that

−→
H is is isomorphic to

−→
Kn, we map Fi in

−→
H to i

in
−→
Kn. We will show that this is an isomorphism. Note that in the next claim, the parity of

a vertex is the parity of a permutation whereas the parity of a number is its numeric parity;

nevertheless, each one is either even or odd.

Claim: The leading vertex in Fi has the same parity as i.

Justification: For i = 1 it is clear that the leading vertex, [2, 1], whose associated permutation

[2, 1, 3, 4, . . . , n] is odd. For i 6= 1, the leading vertex, [1, i] shares the same parity as i because

the number of transpositions required to turn its associated permutation to the identity

permutation, is 0 if i = 2, and i− 2 otherwise. 3

Claim:
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(1) Suppose p is odd. Then [q, p] in Fp and q have the same parity if q < p, and they

have opposite parity if q > p.

(2) Suppose p is even. Then [q, p] in Fp and q have opposite parity if q < p, and they

have the same parity if q > p.

Justification: The vertices of F1 are [2, 1], [3, 1], . . . , [n, 1], the vertices of Fi where 1 < i < n

are [1, i], [2, i], . . . , [i− 1, i], [i +1, i], . . . , [n, i], and the vertices of Fn are [1, n], [2, n], . . . , [n−

1, n]. In every case, the associated permutation of each vertex in the list (other than the

first one) can be obtained from the associated permutation of the previous vertex through a

multiplication of a single transposition. It is now easy to see that the statement is true by

combining this observation and the previous claim. 3

Now consider different cases regarding the parity of Fi and Fj, that is, the parity of i and

j. We will consider the direction of the unique arc between Fi and Fj. Note that this is

a star-arc, in fact, it is an oriented 2-edge as n = 2. So following the orientation rule, it

is directed from an even permutation to an odd permutation. Without loss of generality,

assume i < j.

Case 1: i is odd and j is even.

[j, i] has the opposite parity as j and [i, j] has the opposite parity as i, so [j, i] is odd

and [i, j] is even. Therefore the arc will be directed from [i, j] to [j, i]. So the unique

arc goes from Fj to Fi as required.

Case 2: i is even and j is odd.

In this case, since i < j, [j, i] will be odd and [i, j] will be even. So the arc is directed

from [i, j] to [j, i]. Hence the unique arc is from Fj to Fi as required.

Case 3: Both i and j are even.

In this case, [j, i] will have the same parity as j and therefore even. Vertex [i, j] will

have opposite parity as i and will be odd. Therefore the arc is directed from [j, i] to

[i, j]. So the unique arc goes from Fi to Fj as required.

Case 4: Both i and j are odd.

In this case, [j, i] will have the opposite parity as j and is therefore even. Vertex [i, j]
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will have the same parity as i and is therefore odd. This means the arc is from [j, i]

to [i, j]. So the unique arc goes from Fi to Fj as required.

Hence the mapping from Fi in
−→
H to i in

−→
Kn is indeed an isomorphism, and therefore

−→
H is

⌊

n−1
2

⌋

-connected by Lemma 4.1 and Lemma 4.2. �

Theorem 4.6.
−−−−→
S2p+1,2 is p-connected when 2p + 1 ≥ 3.

Proof. Clearly
−→
S3,2 is strongly connected. We may assume 2p+1 ≥ 5. Let us delete a subset

of the vertices S from
−−−−→
S2p+1,2 with |S| = p− 1. We will call a fundamental clique damaged

if it contains elements from S; otherwise it is undamaged. Let d be the number of damaged

fundamental cliques. Since |S| = p − 1 we know that d ≤ p − 1. Let X be the digraph

induced by the vertices of the undamaged fundamental cliques. Since each fundamental

clique is strongly connected it follows from Lemma 4.5 that X is strongly connected.

Case 1: Every damaged fundamental clique has at most p− 2 vertices from S.

In this case, every damaged fundamental clique is strongly connected by Proposi-

tion 4.3. Choose any damaged fundamental clique D with α deleted vertices. Since

it is strongly connected, it is enough to find a directed arc from it to X and vice

versa. There are p arcs leaving D, each to a different fundamental clique. Since D

has α deleted vertices, there are at most p− 1− α additional damaged fundamental

cliques. Hence there are at least α + 1 undamaged fundamental cliques among the

ones those p arcs go to. Thus there is at least one arc from D to X. Similarly, there

is at least one arc from X to D. So
−−−−→
S2p+1,2 \ S is strongly connected.

Case 2: There exists one damaged fundamental clique, A, with p− 1 deleted vertices.

Then A is the unique damaged fundamental clique. Let Y denote the strong compo-

nent of
−−−−→
S2p+1,2 \S containing X. Suppose u is a vertex in A that is not deleted. Now

suppose the 2p vertices in A, when listed in their natural order are odd, even,. . .,

odd, even. Now consider two cases. (Note that every arc from A to X is a star-arc,

in fact, it is an oriented 2-edge as n = 2. So following the rule, it is directed from an

even permutation to an odd permutation.)
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Case 2a: u is even.

Note that since k and n− k + 1 are even, the basic rule applies in orienting the

fundamental cliques. Since u is even, there is an arc from u to a vertex in X. In

order to show that u is part of Y , we need only show that there exists a vertex

in X with a directed path from it to u. Construct sets Ci, with 1 ≤ i ≤ p, by

assigning each vertex with an odd index that is less than u, and each consecutive

pair of vertices with index larger than u in the order odd-even, to one of the

Ci’s, as pictured in Figure 6.

- odd

- even

C1 C2 Ck Ck+1 Ck+2 Cp

X

u

Figure 6. Picture from Case 2a

Since |A| = 2p, it is clear that there there are in fact p such sets. It is clear

that this gives p mutually (internal) disjoint directed paths from X to u. (See

Figure 6.) Since we only delete p−1 vertices in total, at least one of these paths

remains intact, and thus u is part of Y .

Case 2b: u is odd.

Note that since k and n− k + 1 are even, the basic rule applies in orienting the

fundamental cliques. Since u is odd, there is an edge entering u from X. In

order to show that u is part of Y , we need only show that there exists a vertex

in X with a directed path from u to X. Construct sets Ci, with 1 ≤ i ≤ p,

by assigning each vertex with an even index that is greater than u, and each

consecutive pair of vertices with lower index than u in order odd-even, to one of

the Ci’s, as pictured in Figure 7.
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- odd

- even

C1 C2 Ck Ck+1 Ck+2 Cp

X

u

Figure 7. Picture from Case 2b

Since |A| = 2p, it is clear that there there are in fact p such sets, and hence there

are p mutually (internal) disjoint directed paths from u to to X. (See Figure 7.)

Since we only delete p − 1 vertices, at least one of these paths remains intact,

and thus u is part of Y .

Similarly, the result is true if the 2p vertices in A whose natural order is of the form

even, odd,. . ., even, odd.

�

Theorem 4.7.
−−→
S2p,2 is (p− 1)-connected when 2p ≥ 4.

Proof. It is clear that
−→
S4,2 is strongly connected. We may assume 2p ≥ 6. In

−−→
S2p,2 there

are 2p fundamental cliques, each of size 2p − 1, each of which is (p − 1)-connected by

Proposition 4.3. Let us consider deleting S from
−−→
S2p,2 where |S| = p− 2. Define a damaged

fundamental clique as a fundamental clique containing elements of S, and an undamaged

fundamental clique as one that is not damaged. Let d be the number of damaged fundamental

cliques. Since |S| = p − 2 we know that d ≤ p − 2. Let X be the digraph induced by the

vertices in the undamaged fundamental cliques. Since each fundamental clique is strongly

connected, it follows from Lemma 4.5 that X is strongly connected. Since |S| = p − 2,

every damaged fundamental clique has at most p− 2 deleted vertices, and therefore remains

strongly connected when these vertices are deleted by Proposition 4.3. Choose any damaged
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fundamental clique D with α deleted vertices. Since it is strongly connected, it is enough

to find a directed arc from it to X and vice versa. There are at least p− 1 arcs leaving D,

each to a different fundamental clique. Since D has α deleted vertices, there are at most

p−2−α additional damaged fundamental cliques. Hence there are at least α+1 undamaged

fundamental cliques among the ones those p − 1 arcs go to. Thus there is at least one arc

from D to X. Similarly, there is at least one arc from X to D. So
−−→
S2p,2 \ S is strongly

connected. �

Corollary 4.8. Let n ≥ 3.
−−→
Sn,2 is bn−1

2
c-connected.

Proof. This follows directly from the previous two theorems. �

Lemma 4.9. Let a ∈ {1, 2, . . . , n} and r ∈ {2, 3, . . . , k}. Let Q be the subgraph of
−−→
Sn,k

induced by vertices with the symbol a in the rth position. Let φ be the function that maps

[a1, a2, . . . , ar−1, a, ar+1, . . . , ak] on {1, 2, . . . , n} to [a1, a2, . . . , ar−1, ar+1, . . . , ak] on {1, 2, . . . , n}\

{a}. Then φ either uniformly preserves the parity or uniformly reverses the parity of the

vertices.

Proof. We consider
−−−−−→
Sn−1,k−1 on the symbol-set {1, 2, . . . , n} \ {a}. For notational simplic-

ity, we may assume r = k. Consider the mapping φ from the vertex-set of Q to the

vertex-set of
−−−−−→
Sn−1,k−1 defined by φ([x1, x2, . . . , xk−1, a]) = [x1, x2, . . . , xk−1]. We claim that

[x1, x2, . . . , xk−1, a] and [x1, x2, . . . , xk−1] have either the same parity for every [x1, x2, . . . , xk−1]

or have opposite parity for every [x1, x2, . . . , xk−1]. Consider [x1, x2, . . . , xk−1, a]. Its associ-

ated permutation is u = [x1, x2, . . . , xk−1, a, tk+1, . . . , tn] with tk+1 < tk+2 < · · · < tn. Let π

be the permutation on {1, 2, . . . , n} obtained by exchanging the symbols a and k from the

identity permutation. To compute the parity of u, we compute the number of transpositions

required from u to π plus 1. To compute the parity of u1 = [x1, x2, . . . , xk−1, tk+1, . . . , tn], let

π1 be the permutation on {1, 2, . . . , n}\{a} obtained by deleting a from π. We note that a is

in the kth position in π. Then the parity of u1 is the parity of the number of transpositions

required from u1 to π1 and from π1 to the identity permutation on {1, 2, . . . , n} \ {a}. Since
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the number of transpositions required from u to π is the same as the number of transposi-

tions required from u1 to π1, the claim is established as the the number of transpositions

required from π and π1 to their respective identities is independent of u and u1. �

Lemma 4.10. Let k ≥ 3, n − k + 1 be even, and a ∈ {1, 2, . . . , n}. Let Q be subgraph of
−−→
Sn,k induced by vertices with a in the 2nd position. Then Q has the same connectivity as
−−−−−→
Sn−1,k−1.

Proof. We first assume k is even. Consider the mapping φ from the vertex-set of Q to the

vertex-set of
−−−−−→
Sn−1,k−1 defined by φ([x1, a, x3, . . . , xk]) = [x1, x3, . . . , xk]. Suppose [x1, a, x3, . . . , xk]

is even. The case [x1, a, x3, . . . , xk] being odd is similar and will be omitted. By Lemma 4.9,

φ either uniformly preserves or reverses parity of vertices in Q. We consider two subcases.

The first case is φ preserves parity, that is, [x1, x3, . . . , xk] is even. Then the neighbours

of [x1, a, x3, . . . , xk] in Q via star-arcs are

[x1, a, x3, . . . , xk]←− [x3, a, x1, x4, . . . , xk],

[x1, a, x3, . . . , xk] −→ [x4, a, x3, x1, . . . , xk],

[x1, a, x3, . . . , xk]←− [x5, a, x3, x4, x1, . . . , xk],
...

[x1, a, x3, . . . , xk] −→ [xk, a, x3, x4, . . . , xk−1, x1].

However, in
−−−−−→
Sn−1,k−1 on the symbols {1, 2, . . . , n} \ {a}, we have

[x1, x3, . . . , xk] −→ [x3, x1, x4, . . . , xk],

[x1, x3, . . . , xk]←− [x4, x3, x1, . . . , xk],

[x1, x3, . . . , xk] −→ [x5, x3, x4, x1, . . . , xk],
...

[x1, x3, . . . , xk]←− [xk, x3, x4, . . . , xk−1, x1].

Now for the residual-arcs, care must be taken. The basic rule is used in Q but the reverse

rule is used in
−−−−−→
Sn−1,k−1. We note that φ preserves the natural ordering of a fundamental

clique. In summary, φ preserves parity, residual-arcs in Q are oriented by basic rule and
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residual-arcs in
−−−−−→
Sn−1,k−1 use reverse rule. Therefore, φ reverses directions of the residual-

arcs. (Compare the left picture in Figure 2 and the left picture in Figure 3.) Hence Q is

isomorphic to
←−−−−−
Sn−1,k−1 via φ.

The second case is φ reverses parity, that is, [x1, x3, . . . , xk] is odd. Then the neighbours

of [x1, a, x3, . . . , xk] in Q via star-arcs are

[x1, a, x3, . . . , xk]←− [x3, a, x1, x4, . . . , xk],

[x1, a, x3, . . . , xk] −→ [x4, a, x3, x1, . . . , xk],

[x1, a, x3, . . . , xk]←− [x5, a, x3, x4, x1, . . . , xk],

. . .

[x1, a, x3, . . . , xk] −→ [xk, a, x3, x4, . . . , xk−1, x1].

However, in
−−−−−→
Sn−1,k−1 on the symbols {1, 2, . . . , n} \ {a}, we have

[x1, x3, . . . , xk]←− [x3, x1, x4, . . . , xk],

[x1, x3, . . . , xk] −→ [x4, x3, x1, . . . , xk],

[x1, x3, . . . , xk]←− [x5, x3, x4, x1, . . . , xk],
...

[x1, x3, . . . , xk] −→ [xk, x3, x4, . . . , xk−1, x1].

Now for the residual-arcs, care must be taken. The basic rule is used in Q but the reverse rule

is used in
−−−−−→
Sn−1,k−1. We note that φ preserves the natural ordering of a fundamental clique. In

summary, φ reverses parity, residual-arcs in Q are oriented by basic rule and residual-arcs in
−−−−−→
Sn−1,k−1 use reverse rule. Therefore φ preserves directions of the residual-arcs. (The double

reversal of orientations preserves the directions. Compare the left picture in Figure 2 and

the right picture in Figure 3.) Hence Q is isomorphic to
−−−−−→
Sn−1,k−1 via φ.

The case k being odd is similar. �

Lemma 4.11. Let k ≥ 3, n− k + 1 be odd, and a ∈ {1, 2, . . . , n}. Let Q be subgraph of
−−→
Sn,k

induced by vertices with a in the kth position. Then Q has the same connectivity as
−−−−−→
Sn−1,k−1.
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Proof. We first assume k is even. Consider the mapping φ from the vertex-set of Q to

the vertex-set of
−−−−−→
Sn−1,k−1 defined by φ([x1, x2, . . . , xk−1, a]) = [x1, x2, . . . , xk−1]. Suppose

[x1, x2, . . . , xk−1, a] is even. The case [x1, x2, . . . , xk−1, a] being odd is similar and will be

omitted. By Lemma 4.9, φ either uniformly preserves or reverses parity of vertices in Q. We

consider two subcases.

The first case is φ preserves parity, that is, [x1, x2, . . . , xk−1] is even. Then the neighbours

of [x1, x2, . . . , xk−1, a] in Q via star-arcs are

[x1, x2, x3, . . . , xk−1, a]→ [x2, x1, x3, . . . , xk−1, a],

[x1, x2, x3, . . . , xk−1, a]← [x3, x2, x1, x4 . . . , xk−1, a],

[x1, x2, x3, . . . , xk−1, a]→ [x4, x2, x3, x1 . . . , xk−1, a],
...

[x1, x2, x3, . . . , xk−1, a]← [xk−1, x2, x3, . . . , xk−2, x1, a].

The same rule is applied in
−−−−−→
Sn−1,k−1 on the symbols {1, 2, . . . , n} \ {a}, we have

[x1, x2, x3, . . . , xk−1]→ [x2, x1, x3, . . . , xk−1],

[x1, x2, x3, . . . , xk−1]← [x3, x2, x1, x4 . . . , xk−1],

[x1, x2, x3, . . . , xk−1]→ [x4, x2, x3, x1 . . . , xk−1],
...

[x1, x2, x3, . . . , xk−1]← [xk−1, x2, x3, . . . , xk−2, x1].

Now for the residual-arcs, the rule depends on whether the arc belongs to a fundamental

clique whose leading vertex is even or odd. We note that φ preserves the natural ordering

of a fundamental clique. Since φ preserves parity, the corresponding fundamental cliques in

Q and
−−−−−→
Sn−1,k−1 are oriented the same way. Hence Q is isomorphic to

−−−−−→
Sn−1,k−1 via φ.
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The second case is φ reverses parity, that is, [x1, x2, . . . , xk−1] is odd. Then the neighbours

of [x1, x2, . . . , xk−1, a] in Q via star-arcs are

[x1, x2, x3, . . . , xk−1, a] −→ [x2, x1, x3, . . . , xk−1, a],

[x1, x2, x3, . . . , xk−1, a]←− [x3, x2, x1, x4 . . . , xk−1, a],

[x1, x2, x3, . . . , xk−1, a] −→ [x4, x2, x3, x1 . . . , xk−1, a],
...

[x1, x2, x3, . . . , xk−1, a]←− [xk−1, x2, x3, . . . , xk−2, x1, a].

The same rule is applied in
−−−−−→
Sn−1,k−1 on the symbols {1, 2, . . . , n} \ {a}, we have

[x1, x2, x3, . . . , xk−1]←− [x2, x1, x3, . . . , xk−1],

[x1, x2, x3, . . . , xk−1] −→ [x3, x2, x1, x4 . . . , xk−1],

[x1, x2, x3, . . . , xk−1]←− [x4, x2, x3, x1 . . . , xk−1],
...

[x1, x2, x3, . . . , xk−1] −→ [xk−1, x2, x3, . . . , xk−2, x1].

Now for the residual-arcs, the rule depends on whether the arc belongs to a fundamental

clique whose leading vertex is even or odd. We note that φ preserves the natural ordering

of a fundamental clique. Since φ reverses parity, the corresponding fundamental cliques in

Q and
−−−−−→
Sn−1,k−1 are oriented in the opposite way. (Compare the left picture in Figure 4 and

the right picture in Figure 4.) Hence Q is isomorphic to
←−−−−−
Sn−1,k−1 via φ.

The case k being odd is similar. �

Theorem 4.12. Suppose k ≥ 2. Then
−−→
Sn,k is

⌊

n−1
2

⌋

-connected.

Proof. We will show this by induction on k. By Corollary 4.8,
−−→
Sn,2 is

⌊

n−1
2

⌋

-connected. So

we may assume k ≥ 3. Moreover, it is easy to see that
−→
S4,3 is strongly connected. Hence

we may assume n ≥ 5. Let Hi be the subgraph of
−−→
Sn,k induced by vertices with i in the

second position if n − k + 1 is even and in the k-th position if n − k + 1 is odd. Then it is

isomorphic to either
−−−−−→
Sn−1,k−1 or

←−−−−−
Sn−1,k−1 by Lemma 4.10 and Lemma 4.11. In either case, Hi

is
⌊

n−2
2

⌋

-connected. For any distinct i and j, there are (n−2)!
(n−k)!

independent star-arcs between
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Hi and Hj. Such an arc has end-vertices of the form [j, i, a3, . . . , ak] and [i, j, a3, . . . , ak] if

n − k + 1 is even but the form [j, a2, a3, . . . , ak−1, i] and [i, a2, a3, . . . , ak−1, j] if n − k + 1 is

odd. Also it is easy to see that there are at least
⌊

(n−2)!
2(n−k)!

⌋

arcs directed from Hi to Hj and

vice versa. Now consider the deletion of a subset T of the vertices where |T | =
⌊

n−1
2

⌋

− 1.

Let Ti = T ∩Hi for each i = 1, 2, . . . , n.

Suppose n is even, then bn−1
2
c−1 = n−2

2
−1. We already know that each Hi is bn−2

2
c = n−2

2
-

connected, therefore Hi \ Ti is strongly connected. We are done if we can show that there is

at least one arc from Hi \ Ti to Hj \ Tj for every pair i 6= j. We will show that the number

of (independent) arcs from Hi to Hj is greater than
(⌊

n−1
2

⌋

− 1
)

. Since k ≥ 3 and n is even,
⌊

(n− 2)!

2(n− k)!

⌋

−

(

n− 2

2
− 1

)

=
(n− 2)!

2(n− k)!
−

(

n− 2

2
− 1

)

≥
(n− 2)!

2(n− 3)!
−

(

n− 2

2
− 1

)

≥
n− 2

2
−

(

n− 2

2
− 1

)

= 1

Therefore, we are done if n is even.

Now we will examine the case when n is odd. In this case n = 2p + 1 for some p and
⌊

n−1
2

⌋

−1 = p−1 and Hi is
⌊

n−2
2

⌋

=
⌊

2p−1
2

⌋

= (p−1)-connected. Therefore Hi\Ti is strongly

connected if |Ti| ≤ p− 2.

Case 1: |Ti| ≤ p− 2 for all i.

We are done if
⌊

(n−2)!
2(n−k)!

⌋

− 1 ≥ (p− 1). If k ≥ 4 then
⌊

(n−2)!
2(n−k)!

⌋

= (n−2)!
2(n−k)!

, so

(n− 2)!

2(n− k)!
− (p− 1) ≥

(n− 2)!

2(n− 4)!
− (p− 1) ≥

(2p− 1)(2p− 2)

2
− (p− 1)

=
(2p− 1)(2p− 2)

2
− (p− 1) ≥ 1

since p ≥ 2 as n ≥ 5. Hence there is an arc from Hi \ Ti and Hj \ Tj and vice

versa. Moreover, each Hi \ Ti is strongly connected so
−−→
Sn,k \ T is strongly connected.

However, if k = 3 then
⌊

(n− 2)!

2(n− k)!

⌋

− (p− 1) =

⌊

(n− 2)!

2(n− 3)!

⌋

− (p− 1)

=

⌊

(2p− 1)

2

⌋

− (p− 1) ≥ (p− 1)− (p− 1) = 0
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which gives us the possibility that there are no arcs between subgraphs Hi \ Ti and

Hj \ Tj. This situation will only occur when T = Ti ∪ Tj. Hence we may assume

T = T1∪T2. Since the other Hi’s are undamaged, the digraph induced by the vertices

in them is strongly connected. Hence there is an arc from H1 \ T1 (H2 \ T2) to H3

and vice versa. Therefore,
−−→
Sn,k \ T is strongly connected.

Case 2: |T1| = p− 1 and |Ti| = 0 for all i 6= 1.

Clearly the digraph X induced by the union of the vertices in H2, H3, . . . , Hn is

strongly connected. Let Y be the strong component of
−−→
Sn,k \ T containing X. Let C

be a strongly connected component of H1 \ T1.

Case 2a: C is not a single isolated vertex.

If C contains a star-arc then we are done. To see this, recall that if uv is a

star-arc, then its end-vertices have opposite parity. Hence the two arcs between

{u, v} and X must be in opposite directions. (Recall that the star-arcs between

the Hi’s are oriented 2-edges if n−k +1 is even and oriented k-edges if n−k +1

is odd. Therefore these arcs are either all directed from an even vertex to an

odd vertex or all directed from an odd vertex to an even vertex.) Hence C is

part of Y . Suppose C contains no star-arc. Then C must be a subgraph of

a (directed) fundamental clique of H1. We know that a fundamental clique is

of size (n − 1) − (k − 1) + 1 = n − k + 1. At this point it is enough to show

that C contains an odd vertex and an even vertex, because they will give arcs

between C and X in both directions through star-arcs. By Proposition 4.3, a

fundamental clique is isomorphic to
←−−−−
Kn−k+1 or

−−−−→
Kn−k+1. Since C is a subgraph

of a directed fundamental clique, if it were to contain all odd or all even vertices

then it would not be strongly connected by the definition of the orientation. So

it must contain at least one vertex of each parity.

Case 2b: C is an isolated vertex, π1.

We will show that there is a directed path containing π1 in
−−→
Sn,k \ T that starts

and ends in X. Assume that the arc connecting π1 to Y is directed from π1 to a
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vertex x in X. Within H1, π1 has p arcs directed into it and p−1 arcs leaving it.

Therefore there must exist an arc entering π1 from another vertex π2 in H1 \T1.

If there is an arc directed from a vertex in X to π2 then we are done because

we have a path from X to π2 to π1 to X. If not, we may show by the same

reasoning that π2 must also have an arc entering it in H1 \T1. Since at least one

arc is entering π2 in H1 \ T1, we can find π3 in H1 where there is an arc from

π3 to π2 in H1 \ T1. Again, if there is an arc from a vertex in X directed to π3

we are done. If not then we may repeat this process and eventually either find

a vertex πm with an arc from X leading into it in which case we will be done,

or we will continue to grow this path and it will eventually generate a directed

cycle πkπk−1 . . . πm since H1 has finitely many vertices. If we find such a cycle,

this gives us a non-singleton strongly connected component in H1 \ T1, which

we have previously shown must be part of Y . Thus there exists a path from Y

into this cycle, from which there exists a directed path to π1 by construction,

and hence π1 is part of Y . Above we assumed that the arc connecting π1 to X

was directed from π1 to a vertex in X, if it is the other way around and the arc

connecting π1 to X is directed from a vertex in X to π1, then the exact same

argument with all the directions reversed can be used to show π1 is part of Y .

�

5. Conclusion

In this paper we have shown that
−−→
Sn,k is

⌊

n−1
2

⌋

-connected and hence maximally connected.

This reinforces the knowledge that
−−→
Sn,k is a good generalization of the unidirectional star

graphs and that its definition is the best possible in terms of connectivity.
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