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Abstract. An important issue in computer communication networks
is fault-tolerant routing. A popular graph topology for interconnec-
tion network is the star graph [1]. We know from [6] that if up to
2n−4 vertices are deleted, the resulting graph has a single large com-
ponent and at most one other component of size at most two. This
paper will discuss routing in the large component and also show that
its diameter in the faulty star graph is bounded by diam(Sn) + 9.
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1. Introduction

Distributed processor architectures offer the potential advantage of high
speed, provided they are highly fault tolerant and reliable, and have good
communication between remote processors. An important component of
such a distributed system is its graph topology, which defines the inter-
processor communication architecture. One such graph topology is the
class of star graphs proposed by [1]. They have many advantages over the
hypercubes, such as lower degree and a smaller diameter. Some recent
papers on star graphs include [2–25].

In many interconnection communication networks, the study of fault-
tolerant routing plays a major role in the analysis of the networks. The
fault-tolerant routing problem can be described as follows: Given a set of
faulty vertices which are deleted from the graph, find a shortest routing
between two vertices efficiently. Normally the maximum number of faulty
vertices allowed is the connectivity of the graph, as one requires the network
to be connected. However, bounding the cardinality of the set of faults by
the connectivity provides a worst-case measure as the network may not be
disconnected even if more vertices have been deleted. So it is of interest
to study fault-tolerant routing in this setting. There are a number of ap-
proaches to study this problem. For example, one approach is to assume
the faults appear in clusters and study the so-called cluster fault-tolerant
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routing; we refer the reader to [16]. The connectivity of Sn is n− 1. Under
the assumption of clusters, [15–18] show that Sn can tolerate more than
n − 1 faults and study various related routing problems.

A result from [6] states that if up to 2n − 4 vertices are deleted from
Sn, then the resulting graph has at most two components with one of them
of size at most two. In this paper, we study the fault-tolerant routing
problem with up to 2n − 4 faults, which is almost double the connectivity
of Sn, without extra assumptions. This will establish the result given in [6]
as a corollary.

2. Preliminaries

We assume the reader is familiar with basic terminology in graph theory,
specifically girth, diameter, connectivity, optimal routing and paths. Given
a graph H and a set of faults F ⊆ V (H) such that H \ F is connected, a
routing between two vertices in H \ F is called a fault-tolerant routing in
H .
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Figure 1. The star graph S4

The star graph Sn, (n ≥ 3) introduced in [1], is a graph with vertex-set
being the set of permutations on n symbols. Two permutations [a1, a2, . . . , an]
and [b1, b2, . . . , bn] are adjacent if and only if there exists an i 6= 1 such that
a1 = bi, ai = b1 and aj = bj for j 6∈ {1, i}. In other words, given two
permutations, πa and πb, they are adjacent if one can be obtained from
the other by exchanging the symbols in position 1 and position i for some
i 6= 1. Since this change is through position i, we refer to such an edge as an
i-edge. Figure 1 gives S4. For example, 2413 and 1423 are adjacent through
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a 3-edge in S4. It is also easy to see that Sn has girth 6. Note that if one
fixes the ith symbol (i ∈ {1, 2, . . . , n}) in the jth position (j ∈ {2, 3, . . . , n})
the induced subgraph is isomorphic to Sn−1. We refer to this subgraph as a
substar. It is easy to see that Sn is (n−1)-regular. It is well-known that it is

(n−1)-connected with diameter b 3(n−1)
2 c and the greedy algorithm is opti-

mal. For example to route from [2, 3, 1, 5, 6, 4, 7] to [1, 2, 3, 4, 5, 6, 7], we have
[2, 3, 1, 5, 6, 4, 7] to [3, 2, 1, 5, 6, 4, 7] to [1, 2, 3, 5, 6, 4, 7] to [5, 2, 3, 1, 6, 4, 7] to
[6, 2, 3, 1, 5, 4, 7] to [4, 2, 3, 1, 5, 6, 7] to [1, 2, 3, 4, 5, 6, 7]. (See [1].) An impor-
tant and easy consequence of the greedy routing algorithm is the following
result.

Proposition 2.1. Suppose a = [a1, a2, . . . , an] and b = [b1, b2, . . . , bn] are

in Sn with n ≥ 3 and ai = bi for some 2 ≤ i ≤ n. Then there is an optimal

routing from a to b such that at every intermediate vertex c = [c1, c2, . . . , cn],
ci = ai.

In this paper we make use of the following theorem, and a corresponding
routing algorithm, from [23]:

Theorem 2.2. Given a set of faults F with |F| ≤ n−2, Sn\F is connected

and diam(Sn\F) ≤ diam(Sn)+2. If n ≥ 7 then diam(Sn\F) ≤ diam(Sn)+
1.

3. Extended fault-tolerant routing in the star graphs

Throughout this section, our underlying graph is Sn. Let F be a set of
faults with F ⊆ V (Sn) and |F| ≤ 2n − 4. Because the size of F is larger
than the connectivity of the graph, it is possible for all of the neighbors of
a vertex to be faults, in which case the vertex is isolated. It is also possible
for the neighbors of a pair of vertices connected by a single edge to all be
faults, in which case both vertices will be connected only to each other.
These two types of components will be referred to as extreme and vertices
in extreme components will be called bad.

Given a and b in Sn \ F , our objective is to find a′, close to a, and b′,
close to b, such that the greedy routing from a′ to b′ in Sn avoids elements
of F . Define NF ,k with k ≥ 2 as follows: i ∈ {1, 2, . . . , n} is in NF ,k if and
only if there is no vertex in F with i in the kth position. That is, NF ,k

consists of symbols not in the kth position of any fault in Sn.
For example, in S4, if F = {(1, 3, 2, 4), (4, 2, 1, 3), (4, 3, 1, 2), (3, 2, 4, 1)},

then we have the following: NF ,2 = {1, 4}, NF ,3 = {3}, and NF ,4 = ∅.

Lemma 3.1. Suppose NF ,p 6= ∅ for some p ∈ {2, 3, . . . , n} and n ≥ 6. Let

t ∈ NF ,p. Then for every vertex a in Sn \ F that is not bad, there exists a

fault-free path of length at most 5 from a = [a1, a2, . . . , an] to a′ such that

the pth position of a′ is t.
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Proof. Without loss of generality, we may assume p = 2. If t = a2 then
a′ = a. If t = a1 then a′ = [a2, a1, a3, . . . , an]. For notational convenience,
we assume t = a3. We note that it is enough to find a fault-free path from a
to a vertex with a3 in its first position as a3 ∈ NF ,2 and one can route from
this vertex to the proper a′ via a 2-edge. Hence, [a3, a2, a1, a4, . . . , an] ∈ F
or we are done. Moreover, at least one of the ends of each of the 3-edges
in level 2 (Figure 2) must be in F or we are done. So we have identified
at least n − 1 faults. Since a is not an isolated vertex, we may assume a
neighbor of a via an i-edge where i ∈ {2, 4, 5, . . . , n} is not in F . Without
loss of generality, we may assume i = 2 or i = 4.

We first ssume i = 4. Therefore [a4, a2, a3, a1, a5, . . . , an] 6∈ F and
[a3, a2, a4, a1, a5, . . . , an] ∈ F or we are done. If at least one of the dashed
3-edges in the last level of Figure 2 has neither of its ends belonging
to F , then we are done. Hence we have discovered the possible loca-
tions of n − 3 more faults bringing the total to 2n − 4. So any vertex
that has not implicitly appeared in Figure 2 is not a fault. Suppose at
least one of the neighbors of [a4, a2, a3, a1, a5, . . . , an] via a j-edge where
j ∈ {2, 5, 6, . . . , n} is not in F . Without loss of generality, we may as-
sume j = 2 or j = 5. If j = 2, then the following fault-free path exists:
[a2, a4, a3, a1, a5, . . . , an], [a1, a4, a3, a2, a5, . . . , an], [a3, a4, a1, a2, a5, . . . , an].
If j = 5, then the following fault-free path exists: [a5, a2, a3, a1, a4, a6, . . . , an],
[a1, a2, a3, a5, a4, a6, . . . , an], [a3, a2, a1, a5, a4, a6, . . . , an]. So we may as-
sume all the solid boxed vertices in Figure 2 are faults. Moreover, we
know the two round boxed vertices are faults. Since a is not a vertex in
a component with two vertices, at least one of the dashed boxed vertices,
other than [a4, a2, a3, a1, a5, . . . , an], is not a fault. Without loss of gen-
erality, we may consider two cases. In the first case, we may conclude
[a2, a1, a3, a4, . . . , an] 6∈ F . Moreover, the following fault-free path exists:
[a2, a1, a3, a4, a5 . . . , an], [a4, a1, a3, a2, a5 . . . , an], [a3, a1, a4, a2, a5 . . . , an]. In
the second case, we have [an, a2, a3, . . . , an−1, a1] 6∈ F ; moreover, the follow-
ing fault-free path exists: [an, a2, a3, . . . , an−1, a1], [a2, an, a3, . . . , an−1, a1],
[a3, an, a2, . . . , an−1, a1]. So if i = 4, that is, the neighbor of a via the 4-edge
is good, then we are done.

We now assume i = 2. Therefore [a2, a1, a3, a4, a5, . . . , an] 6∈ F and
[a3, a1, a2, a4, a5, . . . , an] ∈ F or we are done. We still have at least n −
2 faults from the ends of the 3-edges in level two. Similar to the i =
4 case, if at least one of the 3-edges extending from the neighbors of
[a2, a1, a3, a4, a5, . . . , an] has neither of its ends belonging to F , then we
are done. Hence we have discovered the locations of n − 2 more faults,
bringing the total to 2n − 4. Suppose at least one of the neighbors of
[a2, a1, a3, a4, a5, . . . , an] via a j-edge where j ∈ {4, 5, . . . , n} is not in F .
Without loss of generality, we may assume j = 4, so [a3, a1, a4, a2, a5, . . . , an] ∈
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Figure 3. When i = 2 in Lemma 3.1

F . Then the following fault-free path exists: [a4, a1, a3, a2, a5, . . . , an],
[a1, a4, a3, a2, a5, . . . , an], [a3, a4, a1, a2, a5, . . . , an]. �

So, if we can find a position in which some symbol does not appear,
then we can route between any two vertices that are not bad. In general,
though, we cannot guarantee that this is the case. So we need to find a
way to route when the faults are spread around more evenly.

Lemma 3.2. Let |F| ≤ 2n − 4, where n ≥ 6, and suppose NF ,k = ∅ for

all k ∈ {2, . . . , n}, then there exists a fault-free path between any vertices

a, b /∈ F of length at most 2diam(Sn) + 3.
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Proof. Let a = [a1, a2, . . . , an] 6∈ F and b = [b1, b2, . . . , bn] 6∈ F . Note that
if there exists a j ∈ {2, 3, . . . , n} such that aj = bj , then a and b are in
the subgraph with aj fixed in the jth position. Then by Theorem 2.2 we
can find a fault free path from a to b with length at most diam(Sn−1) + 2.
So assume that aj 6= bj ∀j ∈ {2, 3, . . . , n}. Then there exists a f ∈ F such
that f has i in the nth position, for all i ∈ {1, 2, . . . , n}. Let γi = the
number of faults with i in the nth position. Note that γi ≥ 1 as NF ,n = ∅.
Now let Hi be the subgraph induced by vertices with i in the nth position.
Then no Hi can contain more than n − 3 faults. So 1 ≤ γi ≤ n − 3.
Hence Hi \F is connected since Hi is isomorphic to Sn−1 which is (n− 2)-
connected. Of course a ∈ Han

. We know that b /∈ Han
. We also know

that b ∈ Hbn
. The number of independent edges between Han

and Hbn
is

(n − 2)! > 2n − 4 for n ≥ 6. This means there is an edge uv between Han

and Hbn
where u ∈ Han

, v ∈ Hbn
, and u, v /∈ F . Therefore, we can route

from a to u in Han
\F , from u to v, and from v to b in Hbn

\F in at most
diam(Sn−1)+2+1+diam(Sn+1)+2 ≤ 2diam(Sn−1)+5 ≤ 2diam(Sn)+3. �

By Theorem 2.2, if NF ,p = ∅ for each p ∈ {2, 3, . . . , n}, we can route
between any two vertices in Sn, that is, the graph is still connected. Under
this assumption, the extreme cases do not appear as the faults are evenly
distributed. We can now prove Theorem 3.3 in [6]

Theorem 3.3. If Sn is a star with at most 2n − 4 faults, F , then Sn \ F
satisfies one of the following conditions:

1.) Sn \ F is connected.

2.) Sn \ F has two components, one of which has exactly one vertex.

3.) Sn \ F has two components, one of which is K2, that is, the graph

with two vertices and one edge connecting them.

Proof. If Sn \F is connected, then we are done. If not, Lemmas 3.1 and 3.2
imply that it has exactly one big component and several small components
of size one or two. Now assume there are two single-vertex components.
Each vertex requires n − 1 deleted vertices to isolate it from the rest of
the graph. If neighbors of these two vertices have at most one vertex in
common, then we would have 2n − 3 > 2n − 4 faults. Therefore the two
single, isolated vertices must have at least two common neighbors. This is
impossible because Sn has girth 6. So Sn \ F has at most one singleton.

If there was a component consisting of two vertices and an edge joining
them, we would have to remove n − 2 neighbors for each vertex, or 2n − 4
distinct faults. Therefore the neighbor-set of any other small component of
size one or two would be contained in this set of 2n − 4 deleted vertices.
Since n ≥ 6, this would induce a 4-cycle or 5-cycle which is impossible in
Sn. The conclusion follows. �



7

4. Tightening the Bound

The results in the previous theorem are not as good as we could hope
for. In the following theorem we will show that it is possible to tighten this
bound to diam(Sn) + c, where c is a constant.

Theorem 4.1. Let F be a set of faults in a star graph, Sn, n ≥ 6. Then,

if |F| ≤ 2n−4, there is a path between any two vertices, neither of which is

bad, of length at most diam(Sn) + c where c is a constant. Moreover, when

the conditions of Lemma 3.1 hold, c ≤ 9, otherwise, c ≤ 4.

Proof. If the conditions of Lemma 3.1 hold (that is, the faults are clustered),
then we know from that same lemma that the path is of length at most
diam(Sn) + 9. Note that this is +9, not +10, as we are routing in Sn−1

as one position is fixed. If the conditions of Lemma 3.1 do not hold, then
there are at most n − 3 faults in each substar, as in Lemma 3.2. Let
a = [a1, a2, . . . , an] and b = [b1, b2, . . . , bn], where a is the source and b is
the destination. Also, let k be the index where bk = a1.

Case 1: Assume, k ∈ {2, 3, . . . , n}. Define Hj to be the substar of Sn

induced by fixing j in the kth position for j ∈ {1, 2, . . . , n}. If the neighbor
of a via the k-edge is not a fault, then a is connected to a member of
the substar that contains b by a single edge and we are done by applying
Theorem 2.2. So we may assume the neighbor connected to a via the k-edge
is a fault.

Let σ be the permutation on {1, 2, . . . , n} such that [a1, a2, . . . , an] =
[bσ(1), bσ(2), . . . , bσ(n)]. For each i ∈ {2, 3, . . . , k − 1, k + 1, . . . , n}, consider
the path of length two from a via the i-edge followed by the σ(i)-edge. Note
that none of the edges are k-edges along these two-paths, so all the vertices
in these paths have ak in the kth position. Hence all of the vertices are in
the same substar, i.e. Hak

, which has at most n − 3 faults. Because there
are n−2 such two-paths, at least one of them has no faults. Note that these
paths are vertex disjoint as Sn has girth 6. Suppose the two-path leaving
a on an l-edge has no faults, where l 6= k. The end of this two-path is
not a fault and matches b in the σ(l)th position. Now consider the substar
induced by fixing al in the σ(l)th position. This substar contains both b
and the end of the two-path without faults. By Theorem 2.2 we may route
between these two vertices, and in fact, the length of such a routing is at
most diam(Sn−1) + 2 ≤ diam(Sn) + 1. Therefore we can route from a to b
in at most diam(Sn) + 3 steps.

Case 2: Assume k = 1. Then, because a is not an isolated vertex, it
has a neighbor. This neighbor will not match b in the first position, so
we can route from this neighbor to b using the same procedure as in the
first case with at most one extra edge, and so the path has length at most
diam(Sn) + 4.

�
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5. Concluding Remarks

In this paper, we show that simple routing still exists in a star graph
when the number of faults is larger than the connectivity of the graph,
but still “small” enough. In the first instance, there is a substar that
contains no faults, and so we can route into this star and not worry about
the faults. This corresponds to faults appearing in clusters, or unevenly
spread, and so some parts of the graph are relatively untouched. The
second instance occurs when the faults are distributed more evenly. This
turns out to be the better case, in that the worst case routing does not need
too many extra steps. Intuitively this makes sense because if the faults are
not evenly distributed a short path will not be diverted too far. It might
be interesting to investigate whether the bound in the first instance can be
tightened further, but it is probably not worthwhile. For example, if n ≥ 7,
we can use the stronger part of Theorem 2.2.
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