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Abstract. This paper gives a combinatorial approach to solving the
student exam scheduling problem. The problem is to generate sched-
ules that satisfy hard constraints while minimizing soft constraint
voilations. This problem is NP-Hard. The problem is decomposed
into stages that include finding stable sets, weighted bipartite match-
ings, maximum flow, and pathfinding in hypergraphs. We describe
our method and discuss our results and implementation.
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1. Background

The scheduling of exams is a common problem faced by educational
institutions. Even in the simplest forms of this problem, determining if
a feasible schedule exists is NP-Complete. Many others have previously
studied this problem, and some recent papers include [2, 3, 6–9, 12–15, 17].
Some survey papers are [1, 4, 5]. Many previously attempted methods in-
clude genetic algorithms [1,4,7,13–15], various hill climbing and local search
strategies [8, 9, 17], constraint based approaches [6], and some that include
combinations of these [3]. In this paper we will give a strictly combinato-
rial approach to solve a specific exam scheduling problem. The specifics
of the problem we solve are from an international timetabling competi-
tion held by Practice and Theory of Automated Timetabling (PATAT)
<http://www.asap.cs.nott.ac.uk/ASAP/ttg/patat-index.html> in 02/03.

2. Problem

The student exam scheduling problem is a standard event scheduling
problem. Given sets of exams and students, each student has a schedule of
exams they must attend. Furthermore, these exams must be scheduled into
a set of timeslots such that no student has multiple simultaneous exams.
We will look at solving a more specific and complicated version of this
problem, as proposed by PATAT. We are given:

• A set of exams
1
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• A set of students
• A set of rooms
• A number of timeslots

With each of these sets comes additional information interrelating them.
Each student has a schedule of exams they must attend. Each room has
multiple features, including room size, and several additional features such
as presence of a digital projector or dry erase board. Each exam has a set of
required features including the number of students attending it, along with
requirements regarding the presence of other features such as a projector. In
this arrangement, rooms can only accommodate exams if they have enough
seats to fit all the attending students, and have at least all the features
required by the exam. For our problem we will consider timeslots for one
week, arranged nine per day for five days. A feasible schedule would be
the assignment of events to rooms within the limited number of timeslots
such that: no students have to write multiple simultaneous exams and
every room can accommodate each exam assigned to it. We will call the
constraints required for a feasible schedule hard constraints.

In addition to finding a feasible schedule, there are other factors we might
find desirable when finding a schedule. For example, if we can find multiple
feasible schedules, we may want to decide when one is better than another.
There are many factors one could consider when evaluating which schedule
is the best. For our specific problem we look to a set of soft constraints that
we will try to avoid violating, but for which violation of them will not result
in infeasibility. From these soft constraints we can derive a cost function
that computes a penalty for any feasible schedule based on the number of
soft constraints it violates. In our case the soft constraints are as follows:

(1) Avoid students having a block with three consecutive exams
(2) Avoid students having a single exam in one day
(3) Avoid students having an exam in the last timeslot of the day

Each occurrence of any of these situations is considered equally bad, so
the value of the cost function associated with a feasible schedule gives the
number of times each soft constraint is violated. For example a feasible
schedule with a cost function value of zero would be an optimal solution
for any problem.

The specific instances we set out to solve were of medium size. They
were large enough that brute force style methods would be utterly useless,
yet small enough that one might run across many larger instances in real
world settings. The problem instances given by PATAT had:

• 200–350 students
• 350–440 exams
• 10–11 rooms each with 5–10 features
• 45 timeslots split evenly between five days
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For the PATAT competition, speed was of importance, and contestants were
to solve many different instances of this size by running their program on a
single processor machine for a limited period of time. The time allowed for
each machine was computed by a benchmarking program that took many
factors into account. On a Pentium 4 system we were limited to roughly
three minutes.

3. Method

We set out to find a strictly combinatorial solution to this problem. We
decomposed the problem into several stages, each of which we solve using
classic combinatorial optimization methods. Others have previously looked
at similar decompositions of the exam scheduling problem. They have been
referred to as cluster methods, and some publications on these methods
are [10,11,16]. For discussion of cluster methods and other commonly used
approaches to solve this problem see [4].

Algorithm 1 Timetabling heuristics mainline

Given
number of events ne

number of features nf

number of students ns

number of rooms nr and size of each si, 0 ≤ i < nr

event feature matrix MEF
ne×nf

[MEF ]ij =

{

1 event i requires feature j

0 otherwise

room feature matrix MRF
nr×nf

[MRF ]ij =

{

1 room i has feature j

0 otherwise

student event selection matrix MSE
ns×ne

[MSE]ij =

{

1 student i has chosen event j

0 otherwise

FindInitialSolution()
SatisfyHard()
MinimizeSoft()

3.1. Finding Initial Solution. The goal of our initial phase is to assign
events to rooms in timeslots V1, V2, . . . , Vn such that all events are assigned
to rooms which can accommodate them, and no student has multiple exams
scheduled into the same timeslot. Initially we will call these timeslots virtual

timeslots, and not restrict their number, or assign them to an actual timeslot
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with a specific day and time until later. Note that this assignment may or
may not represent a feasible schedule. If n > 45 the corresponding schedule
is not feasible.

Our first step is to construct a student conflict graph G where V (G) = {e|
e is an exam}, and E(G) = {(ei, ej)| ei and ej have at least one common
student}. We will also define a weight function ω(e) = δG(e), where δG(e)
is the degree of e in G. The reason this graph is of interest is that since
the edges represent common students between two events, any set of events
eligible to go in the same timeslot would be a stable set 1 of G. With this
in mind, the next step is to greedily choose a maximal stable set S from
this graph. We will choose vertices with high weights first and in the case
of a tie we will choose randomly from the vertices with highest weights.
The vertices we choose will next be matched and assigned to rooms. We
choose vertices with high weights first so events that are highly conflicting
with other events are given higher priority when assigning events to rooms.
We note that finding a maximal stable set in this manner is more helpful
than choosing maximum stable sets in G, as S is typically a large set, and
choosing a stable set of maximum size may use events with low conflict
early.

The next stage of our algorithm is to construct a weighted bipartite
event-room graph B where V (B) = {S ∪R| S is the stable set chosen from
G and R is the set of rooms available}, and E(B) = {(e, r)| e is an event in
S and r is a room that can accommodate e}. Typically in such a graph |S|
will be larger than |R|, because |S| was chosen to be maximal in G. This
graph is constructed as a tool that will help us match some subset of events
from S to rooms in R. We now will let nr represent the number of rooms,
which in our case is 10 or 11, and define a waste function for each edge
α(e, r) to be the number of features in r unused by e. Define the weight of
the edges in B as:

ω(e, r) = 2nr+2−δB(e) + δG(e) − α(e, r)

where δG(e) and δB(e) are the degrees of e in G and B. The weights can
be thought to represent the priority of matching a particular event to a
room. This function was determined through experimentation, but is not
random. For example, events with a low degree in B will have a high
priority when matching events to rooms because there are few rooms that
can accommodate them. We will also give higher priority to events with a
high degree in G because such events are incompatible with many others
and we want to get them matched as soon as possible. The waste function
α is also included as a way to give priority to event-room combinations with
“low waste”, or a low number of unused features. Once B is constructed

1A set of pairwise nonadjacent vertices, also referred to as an independent set.
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we find a maximum weighted matching. This is a well known problem and
in our implementation we used the Hungarian method.

Algorithm 2 Initial solution (FindInitialSolution())

Construct event conflict graph G

nvt := 0
while |V (G)| 6= 0 do

Find a maximal stable set S ⊆ V (G) greedily
Construct bipartite event room graph B

Find a weighted maximum matching M in B

Assign all events in M to virtual time slot nvt and increment nvt

Delete all events in M from graph G

end while

A matching in B represents an assignment of events from S to separate
rooms. Since S is a stable set in G, this assignment of events to rooms
can be assigned to a timeslot. We record this assignment of events to
rooms in a virtual timeslot Vi, remove the vertices in G corresponding to
events placed in Vi, and repeat this process. We will continue to repeat
this process until V (G) is empty. Once completed we are left with a valid
assignment of all events to rooms within virtual timeslots V1, V2, . . . , Vn. If
n ≤ 45 this represents a feasible schedule that satisfies all hard constraints
by arbitrarily assigning virtual timeslots to the real timeslots. However, as
mentioned previously, if n > 45 we do not yet have a feasible schedule, and
the next phase of our algorithm addresses this problem.

3.2. Satisfying Hard Constraints. We enter this phase with a set of
virtual timeslots V1, V2, . . . , Vn that contain assignments of events to rooms
in a feasible manner. The purpose of this phase is to essentially “squeeze”
the events into fewer timeslots.

Our approach is to find a way to rearrange the events into different rooms
and timeslots in order to empty some of the higher indexed timeslots all
together. We achieve this by modeling the problem as a flow problem on
the following directed graph D. Let V (D) = {v| v is a room within any
timeslot} and E(D) = {(vi, vj)| vi contains an event that can be moved
into vj without rendering the resulting schedule infeasible}. To describe
more precisely how the edges are chosen, if an event contained in vi could
replace an event from vj , then a directed edge goes from vi to vj . To see if
an event in vi can be placed in vj we must check a conditions. The room
in vj must accommodate the event in vi, meaning it must have enough
seats and all the required features. We also need to ensure that no student
taking the exam in vi is also taking another exam in any of the exams
scheduled in the same timeslot as vj . Both of these can easily be checked
using information we could record from the previous phase of the problem.
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Now consider a directed path in D terminating at a vertex that corre-
sponds to an empty room. If we are to take the event in vi and move it to
vj for every edge (vi, vj) in our path, then this represents a rearrangement
of events into different rooms and timeslots. However, there is one small
problem here. If we originally build all the edges of D, then taking such
a path and rearranging the events accordingly may not always result in a
feasible schedule. For example, suppose some event contained in vi can be
moved to vj , and (vi, vj) is in D. Now suppose that some event contained
in vm can be moved to vn, and (vm, vn) is also in D and vj and vn are both
in timeslot V1. There is nothing that ensures the events in vi and vm have
no students in common, so rearranging all the events according to the path
may leave the events previously in vi and vm in vj and vn which are both in
V1 giving us a student conflict, and an infeasible schedule. This problem is
easy to avoid, but considering it is important to ensure we do not augment
a feasible schedule and convert it into an infeasible one. We will discuss
avoiding such infeasible schedules when describing our use of this graph.

Algorithm 3 Hard constraints satisfaction (SatisfyHard())

Construct graph D

while nvt > 45 do

Choose source v ∈ Vi where i > 45
run maxflow-mincut algorithm on D

if there is a path P = v1, . . . , vn then

for each arc (vi, vi+1) ∈ P do

Move event from slot i into slot i + 1
end for

Recompute number of time slots nvt

end if

end while

Recall that the goal of this phase is to rearrange events to require less
timeslots. We will accomplish this by doing the following: construct D

as described above, add a new vertex t to D, add directed edges from
every vertex corresponding to an empty room in D to t whenever that
empty room is in Vi for 1 ≤ i ≤ 45, let a vertex containing an event in
any timeslot with index greater than 45 be a source, and let t be a sink
and apply the max-flow algorithm. As mentioned previously we have to
exercise caution in how we augment along paths in D to avoid rendering
the schedule infeasible. In order to avoid such problems we were able to
construct the edges in D dynamically, incorporating the extra condition
that if we augment on any path leading from the source to any directed
edge, it will not produce a conflict. Continue to repeat this process for
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every event that is not included in the first 45 timeslots, and eventually
every event should be squeezed into the first 45 timeslots.

There is no guarantee this will give us a feasible schedule if one exists.
However, we may recall that determining if a feasible schedule even exists
for a problem instance is NP-complete. In practice this worked extremely
well for compressing the events into fewer timeslots.

3.3. Minimizing Soft Constraints. By now we have virtual timeslots
V1, V2, . . . , Vn, where n ≤ 45, and we are left to assign these virtual timeslots
to the real timeslots (i.e. Monday 8am). We can also think of this as
a reindexing of V1, V2, . . . , Vn, in order to minimize the number of soft
constraint violations.

In the problem description we list three soft constraints: (1) minimiza-
tion of consecutive exams, (2) avoiding students with single exam in a given
day, and (3) minimization of exams written in the last timeslot of the day.
These were given as part of the problem posed in the PATAT competition
that we developed this method for. In practice, we saw that constraints
(1) and (3) were by far the most troublesome, so our method focuses on
addressing these and ignores the (2). We therefore want to order the ex-
ams in such a way that attempts to avoid students having more than two
consecutive exams and minimizes the number of students taking exams in
the last timeslot of the day.

In order to attempt to minimize the number of students with an exam at
the end of the day we would essentially extend our previous phase, satisfying
the hard constraints. Instead of stopping once we had all exams in 45
timeslots, we would continue the process trying to fit them into fewer and
fewer timeslots. In our problem instance, it would be impossible to fit all
exams in less than 40 timeslots.

Once we had the exams scheduled into as few timeslots as possible,
we sought out to order the timeslots in a manner that would attempt to
minimize the number of students with more than two consecutive exams.
We formulated this as a pathfinding problem in a hypergraph and we used
a greedy approach.

Let H be a hypergraph where V (H) = {Vi|1 ≤ i ≤ 45} and E(H) =
{(Vi, Vj , Vk)|Vi, Vj , Vk ∈ V (H)}. Notice that the vertex set consists of 45
timeslots, even if all events are scheduled into fewer than 45 timeslots. It
is of interest to define a weight on this graph and we will do so as follows,
letting S(Vi) represent the set of students attending an event in Vi:

ω(Vi, Vj , Vk) =

∣

∣

∣

∣

∣

∣

⋃

n∈{i,j,k}

S(Vn)

∣

∣

∣

∣

∣

∣
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For a path of length three or more (p0, p1, . . . , pn), let the weight of that
path be

n−2
∑

i=0

ω(pi, pi+1, pi+2).

Now we can see that finding five paths in H , each of length nine with a
combined weight of p, is the same as finding a five day timeslot arrangement
with a penalty of p from soft constraint (1).

As mentioned previously we will only concern ourselves with minimizing
this penalty, and the penalty caused by the number of students writing
exams in the last timeslot of the day. In order to choose the five paths we
set aside five vertices with low weight to reserve for the last timeslots of
each day. Then we greedily choose five paths of length five with low weight.
Greedily add remaining vertices one by one to any of the paths that will give
the least penalty (stopping adding vertices to paths when they reach length
eight). Once all paths are of length eight, add the five vertices initially set
aside, one to each path, in the way that will incur minimum penalty. All of
this is relatively computationally inexpensive, especially because the edge
weights can be computed dynamically in an efficient way. For example,
once we have a path, in order to compute the cost of adding any of the
other unused vertices we can take the intersection of the students in the
last two timeslots of the path, and then take the intersection of that with
the student set of each of the other timeslots one by one.

Algorithm 4 Soft constraint minimization (MinimizeSoft())

Construct the virtual time slot set of students Vi

Vi = {j | student j is busy during time i}
Construct V = {V1, V2, . . . , Vnvt

}
Set aside five Vi of minimal student count
Construct initial ordered list Dk = (Vik

, Vjk
), 1 ≤ k ≤ 5, one per day

where the pairs (Vik
, Vjk

) have minimal intersection among all pairs
V = V \ {Vi1 , Vj1 , . . . , Vi5 , Vj5}
while |V| 6= 0 do

Choose Vi of minimal intersection with head or tail of each a list, say
Dk.
Add Vi to Dk and delete from V

end while

Add the originally saved five Vi, one per list Dk, minimizing penalty
associated with being last time slot of day

Once we have found all five of these paths of length nine, we arrange
them into each of the five days, putting whichever of the head or tail has
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less students in it into the last timeslot of the day. This will be our final
schedule.

4. Implementation and Results

As previously mentioned, the motivation for developing this method
was to compete in an international timetabling competition organized by
PATAT. For more details about the competition, we refer the reader to
the competition website <http://www.idsia.ch/Files/ttcomp2002/>. We
implemented our algorithm in C and were able to complete all instances
within approximately 2% of the time allotted. For the competition, we
would use our remaining time to rerun the program multiple times. Al-
though solutions usually had similar penalties, the randomness in choosing
stable sets in the initial phase made additional runs produce different solu-
tions.

The format of the competition was that we were issued twenty instances
upon entry to test, and then within the last week of the deadline we were
issued twenty fresh instances. We were required to reproduce results if
needed. Of all the teams that entered, we were one of only 22 to successfully
complete all the problem instances. We will give our results for the 20
competition instances. Fugure 4 gives the number of violations for each
soft constraint and the total penalty:

The problem instances and the results of selected other participants are
available for download at the competition webpage
<http://www.idsia.ch/Files/ttcomp2002/>.

5. Conclusions

In this paper we gave a specific student exam scheduling problem and
propose a strictly combinatorial approach to solve it. Although we did not
win the competition in which this problem was posed, the leading teams
did not use a strictly combinatorial approach. The speed of our method is
a strong point, we were able to reach our solution in a matter of a seconds
as opposed to minutes. Looking back at the combinatorial approach of
each stage of our algorithm, it can also be seen that increasing parameters
such as the number of students or exams, would not greatly increase the
runtime. Therefore our method is promising for larger scale problems in a
real world setting.
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